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by
Jacob Bernstein

Submitted to the Department of Mathematics
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Doctor of Philosophy

Abstract

Using the tools developed by Colding and Minicozzi in their study of the structure
of embedded minimal surfaces in R3 [12, 19–22], we investigate the conformal and
asymptotic properties of complete, embedded minimal surfaces of finite genus and one
end. We first present a more geometric proof of the uniqueness of the helicoid than
the original, due to Meeks and Rosenberg [45]. That is, the only properly embedded
and complete minimal disks in R3 are the plane and the helicoid. We then extend
these techniques to show that any complete, embedded minimal surface with one
end and finite topology is conformal to a once-punctured compact Riemann surface.
This completes the classification of the conformal type of embedded finite topology
minimal surfaces in R3. Moreover, we show that such s surface has Weierstrass data
asymptotic to that of the helicoid, and as a consequence is asymptotic to a helicoid
(in a Hausdorff sense). As such, we call such surfaces genus-g helicoids. In addition,
we sharpen results of Colding and Minicozzi on the shapes of embedded minimal disks
in R3, giving a more precise scale on which minimal disks with large curvature are
“helicoidal”. Finally, we begin to study the finer properties of the structure of genus-g
helicoids, in particular showing that the space of genus-one helicoids is compact (after
a suitably normalization).

Thesis Supervisor: Tobias H. Colding
Title: Professor of Mathematics
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Chapter 1

Introduction

The study of minimal surfaces has a long history, dating to the eighteenth century
and the beginnings of the calculus of variations. The theory sits at a fundamental
intersection of geometry, analysis and topology and has provided important tools,
techniques and insights in all three areas. Moreover, even in its most classical setting,
minimal surface theory remains an active area of research. Recall, a minimal surface is
a surface that is a stationary point of the area functional; in other words, infinitesimal
deformations of the surface do not change its area. A particularly important class
of these, and indeed a major motivation for the theory, are surfaces that actually
minimize area in a global sense, as these can be taken as a model of the shape of a
soap film.

While minimal surfaces can be studied in a large number of different contexts, we
will restrict our attention to the classical setting of minimal surfaces in R3. This is,
of course, the context in which the theory was originally developed and remains an
area of active research. We will be interested in classifying the complete embedded
minimal surfaces in R3. Before discussing such a classification program further, we
first record the three most important such surfaces. We do this both to illustrate
that this is a non-trivial question and to have some simple examples on hand. The
first, and least interesting, is the plane, the second is the catenoid and the final is the
helicoid. The catenoid was discovered by Euler in 1744 and is the surface of revolution
of the catenary (see Figure 2-1). The helicoid was discovered by Meusnier in 1776
and looks like a double-spiral staircase (see Figure 2-2). It is the surface swept out
by a line moving through space at a constant rate while rotating at a constant rate
in the plane perpendicular to the motion.

A reason to classify all complete, embedded, minimal surfaces, is that doing so
allows one, in a sense, to understand the structure of all embedded minimal surfaces.
Indeed, the local structure of any embedded minimal surface is modeled on one of
the complete examples. This is because there exist powerful compactness theories
for such surfaces which come from the ellipticity of the minimal surface equation.
We emphasize that the assumption that the surfaces are embedded is both extremely
natural and also crucial, without it, very pathological complete minimal surfaces can
be constructed, and there is very little local geometric structure.

The first step in any such geometric classification program is to first classify the
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underlying topologies of the geometric objects. Because we are interested only in
surfaces, this is well known and the possible topologies are particularly simple. Nev-
ertheless, at this step we do simplify a bit and restrict our attention only to surfaces
of finite topology. That is, surfaces diffeomorphic to a compact surface with a finite
number of punctures. We point out that there are a great number of examples of
surfaces with infinite genus, and so a classification of these surfaces would be very
difficult. On the other hand, surfaces with an infinite number of ends are much more
rigid. Indeed, Meeks, Perez and Ros in [44] completely classify complete, properly
embedded minimal surfaces of genus zero that have an infinite number of ends.

The next step is to understand, to a degree, the conformal structure of the sur-
faces. Recall, any (oriented) surface in R

3 has a canonical complex structure, induced
by the metric. Furthermore, the minimality of the surface is equivalent to the Gauss
map being holomorphic with respect to this structure. As such, there is an intimate
connection between complex analysis and the properties of minimal surfaces in R3.
The crucial step at this stage is to determine the conformal type of the ends, as this
has important global complex analytic, and hence geometric, consequences. Precisely,
one must determine whether a neighborhood of the end, which is topologically an an-
nulus, is conformally a punctured disk or conformally an annulus. This is usually
accomplished by first gaining some weak understanding of the asymptotic geometry
of the end. When this implies that the end is conformally a punctured disk, com-
plex analytic arguments then give much stronger asymptotic geometric information.
Indeed, in this last case one shows that the surface is asymptotic to either a plane,
half a catenoid or a helicoid. The final step is to understand the finer geometric (and
conformal) properties of the surface. This is a difficult and subtle problem and very
little is known when the genus is positive (for surfaces with genus zero, much stronger
rigidity results can be usually be immediately deduced).

A classic result of Huber, [41], states that oriented surfaces of finite total curvature
are parabolic. In other words, if the surface is also complete then it is conformally a
punctured compact Riemann surfaces. Osserman, in [53], specializes this to minimal
surfaces and shows that when the surface is minimal, in addition to having this
simple conformal type, the Gauss map extends holomorphically to the puncture (as
does the height differential, see (2.3)). Using this, Osserman proves that the only
complete minimal disk of finite total curvature is the plane. The results of Huber
and Osserman have been the guiding principle in the study of embedded minimal
surfaces with more than one end. This is because a pair of embedded ends can
be used as barriers in a Perron method construction. Indeed, using the ends one
constructs a much nicer minimal surface between the ends, which can be used to get
some asymptotic geometric information about the ends. Ultimately, this allows one
to prove that the ends have finite total curvature.

One of the first results implementing this idea was, [33], wherein Hoffman and
Meeks show that any complete properly embedded minimal surface with finite topol-
ogy and two or more ends has at most two of the ends having infinite total curvature.
As a consequence, conformally such a surface is a punctured compact Riemann sur-
face with at most two disks removed. This was refined by Meeks and Rosenberg
in [48]; they show that such surfaces are necessarily conformal to punctured compact
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Riemann surfaces. However, like [33], they can not rule out infinite total curvature
for some of the ends. Nevertheless, this classifies the conformal type of all complete,
properly embedded minimal surfaces of finite topology and two or more ends. Finally,
Collin in [25] showed that in fact any complete, properly embedded minimal surface
of finite topology and two or more ends has finite total curvature.

This weak restriction on the asymptotic geometry allows one to say much more.
In [50], Lopez and Ros show that the only complete embedded minimal surfaces with
finite total curvature and genus zero are the catenoid and plane. Similarly, (though
using very different methods) Schoen, in [57], shows that the catenoid is the unique
complete minimal surface of finite total curvature and two ends. Note, both of these
results pre-date [25] and assumed a priori bounds on the total curvature. In particular,
taken together with the work of [25], this completely classifies the space of complete
embedded minimal surfaces of finite topology that are in addition either genus zero
or which have precisely two ends – in either case the the only non-flat surface is a
catenoid.

The helicoid has, by inspection, infinite total curvature, and so the above approach
has no hope of working for surfaces with one end. Indeed, until very recently, the
only results for minimal surfaces with one end required extremely strong geometric
assumptions (see for instance [31] or [37]); the main difficulty was that there were
no tools available to analyze (even very weakly) the asymptotic geometry of the
end. The big breakthrough came with the highly original and groundbreaking work
of Colding and Minicozzi. They abandoned the global approach to the theory and
instead, through very deep analysis, were able to directly describe the the interior
geometric structure of an embedded minimal disk. It is important to emphasize
that their work is local and makes no use of complex analysis (and so in particular
generalizes to other ambient 3-manifolds). This theory is developed in the series of
papers [19–22] (see [23] for nice expository article). Roughly, speaking they show
that any embedded minimal disk of large curvature is modeled (in a weak sense) on
the helicoid. As a consequence of this, Colding and Minicozzi give a compactness
result for embedded minimal disks that satisfy only a (mild) geometric condition, in
particular they impose no area or curvature bounds. That is, they show that any
sequence of embedded disks whose boundary goes to infinity has a sub-sequence that
either converges smoothly on compact subsets or behaves in a manner analogous to
the homothetic blow-down of a helicoid.

Using this compactness theorem, Meeks and Rosenberg in [45], were able to finally
gain some geometric information about the end of a general properly embedded min-
imal disks. Using some subtle complex analytic arguments, this allowed Meeks and
Rosenberg to completely classify these surfaces, determining that they must be either
a plane or a helicoid. In Chapter 4, we will treat the same subject, but rather then
appealing to the compactness theory, we make direct use of the results of Colding and
Minicozzi on the geometric structure of embedded minimal disks. This dramatically
simplifies the proof as well as giving strong hints as to how to extend to higher genus
surfaces. In Chapter 6, we develop this approach and determine the conformal type
of once punctured surfaces of finite genus – showing that any such surface is con-
formal to a punctured compact Riemann surface. This completes (along with [48])
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the classification the conformal types of complete, embedded, minimal surfaces of
finite topology. As a consequence, we deduce that these surfaces are asymptotically
helicoidal and so feel free to refer to them as genus-g helicoids. In Chapter 5, we
investigate what the uniqueness of the helicoid tells us about the shapes of minimal
disks near points of large curvature. Finally, in Chapter 7, we investigate more care-
fully the finer geometric structure of genus-one helicoids. In particular, we show that
the space of genus-one helicoids is compact.
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Chapter 2

Background

Minimal surfaces have been extensively studied for centuries and so any attempt to
summarize the theory will be woefully incomplete. Nevertheless, we at least attempt
to introduce the concepts and theory we will need in the sequel. Thus, we restrict
attention to the classical setting of minimal surfaces in R3. For more details, we refer
to the excellent books on the subject, [13, 54], from which the following is drawn.

2.1 Minimal Surface Theory in R
3

2.1.1 Basic theory

For simplicity, we restrict our attention to minimal surfaces in R
3, though many of

the basic concepts can be generalized to arbitrary co-dimension surfaces in arbitrary
ambient Riemannian manifolds. We point out, however, that minimal surface theory
in R3 admits particularly strong results. One important reason for this is that there
is a powerful connection with complex analysis. This connection has proven to be a
very important approach to the theory and exists only in R3; we will make substantial
use of it.

Suppose M is a 2-dimensional, connected, orientable manifold (possibly open and
with boundary) and let F : M → R3 be a smooth immersion. We will denote by
Σ the image of M and so Σ is a surface parametrized by M , though we will rarely
distinguish between the two. If F is injective, then we say that Σ is embedded. We
denote by n a smooth choice of normal to Σ that is a smooth map n : M → S

2 ⊂ R
3

so n(p) is orthogonal to Σ at p. Recall, by assumption, M is orientable and so such n

exists. We denote by hΣ the metric induced on M by the euclidean metric of R3 and
denote by dvolΣ the volume form associated to this metric. We say that Σ is complete
if hΣ is a complete metric on M and that F (or Σ) is proper if the pre-image of a
compact (in the subspace topology induced by R

3) subset of Σ is compact. We will
only study surfaces M with “finite” topology, that is:

Definition 2.1.1. We say that M a smooth surface (possibly open and with bound-
ary) has finite topology if it is diffeomorphic to a finitely punctured compact surface
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M̄ . Moreover, we say M has genus g if M̄ has genus g and we say M has e ends if
M is obtained from M̄ by removing e points.

Let us define the local area functional as follows: for K ⊂ M̊ a compact set define
AreaΣ(K) =

∫

K
dvolΣ. We say that Σ is minimal if it is a stationary point for the

area functional, in other words infinitesimal deformations of Σ do not change the
area. Precisely:

Definition 2.1.2. We say that Σ = F (M) is minimal if, for all K compact in M̊
and φ ∈ C∞

0 (K), the following holds:

(2.1)
d

dt

∣

∣

∣

∣

t=0

AreaΣt(K) = 0,

where Ft : M → R3 is defined by Ft(p) = F (p) + tφ(p)n(p) and Σt = Ft(M).

For example, any surface which minimizes area relative to its boundary γ = ∂Σ is
minimal. Physically, this surface represents the shape of a soap film spanning a wire
given by the curve γ. Note that surfaces that minimizes area in this respect form
a much smaller class than those that are merely stationary. They were extensively
studied by the physicist Plateau and the problem of determining whether a given
curve is bounded by a minimal surface bears his name. We note that there is an
incredibly rich theory devoted to answering this question, which we will completely
ignore.

Minimality is equivalent to a curvature condition on Σ. Indeed, an integration by
parts gives the first variation formula:

(2.2)
d

dt

∣

∣

∣

∣

t=0

AreaΣt(K) =

∫

M

HφdvolΣ.

Here, H is the mean curvature of Σ with respect to n, that is, the trace of Dn, or
equivalently, the sum of the two principle curvatures. Thus, an equivalent characteri-
zation of smooth minimal surfaces is as surfaces with mean curvature identically zero.
This can also be interpreted to mean that F is a solution to a second order non-linear
elliptic system. Indeed, in R3, the minimality of Σ is equivalent to the harmonicity
of the coordinate functions. That is, xi ◦ F , the components of F , are harmonic
functions on M with respect to the Laplace-Beltrami operator, ∆Σ, associated to hΣ.

A simple but extremely important consequence of the maximum principle and the
harmonicity of the coordinate functions is the following convex hull property:

Theorem 2.1.3. Suppose K is a convex subset of R3 and Σ is minimal with ∂Σ ⊂ K
then Σ ⊂ K.

As M is a surface the metric induced on it by F gives M a canonical complex
structure, given by rotation by 90◦. Thus, M is naturally a Riemann surface. The
mean curvature vanishing is then equivalent to the Gauss map n being (anti-) holo-
morphic when one views S2 as CP 1. In particular, the stereographic projection of n,
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which we hence forth denote by g, is a meromorphic function on M . In particular,
dx3 is the real part of a holomorphic one form on M , dh, the height differential. Note,
the Gauss map is vertical only at the zeros of dh.

Using this data one obtains the Weierstrass representation of Σ, namely for ν a
path in M connecting p to p0:

(2.3) F (p) = Re

∫

ν

(

1

2

(

g − 1

g

)

,
i

2

(

g +
1

g

)

, 1

)

dh + F (p0).

Conversely, given a Riemann surface M , a holomorphic one-form dh and a mero-
morphic function g, that g vanishes or has a pole only at the zeros of dh, then the
above representation gives a minimal immersion into R3 as long as certain compat-
ibility conditions are satisfied. These conditions, known as period conditions, must

be satisfied for F to be well defined. In other words, the closed forms Re 1
2

(

g − 1
g

)

,

Re i
2

(

g + 1
g

)

and Re dh must be exact.

A particularly nice class of minimal surfaces are those that are a graph of a
function. Suppose u : Ω → R is a C2 function on Ω an open subset of R2. The
the graph of u, Γu = {(p, u(p) : p ∈ Ω} ⊂ R3 is minimal if and only if u satisfies the
minimal surface equation:

(2.4) div

(

∇u
√

1 + |∇u|2

)

= 0.

Notice, that u is a solution to a quasi-linear elliptic equation and so standard elliptic
theory as in [30] can be applied to u. Moreover, it can be shown that Γu is actually
area-minimizing with respect to ∂Γu. A consequence of this is that solutions of (2.4)
are much more rigid than solutions to general second-order elliptic equations. For
instance, S. Bernstein shows in [5] that the only entire solution is a plane:

Theorem 2.1.4. Suppose u : R2 → R is a solution to (2.4) then u is affine.

A related result proved by Bers [6]:

Theorem 2.1.5. Suppose u : R2\B1 → R is a solution to (2.4) then u has an
asymptotic tangent plane.

Finally, we introduce and briefly discuss another important sub-class of minimal
surfaces. We say a minimal surface Σ is stable if it minimizes area with respect to
“nearby surfaces”, i.e. the surface is not merely a critical point of area but is a “local
minimum”. This is made precise by means of the second variation formula. Here Σ0

is minimal, and φ, Σt are as in Definition 2.1.2:

(2.5)
d2

dt2

∣

∣

∣

∣

t=0

AreaΣt(K) =

∫

M

|∇φ|2 − |A|2φ2dvolΣ.

In particular, Σ is stable if and only if this value is always greater than or equal to 0
for any choice of φ. As is clear from the above, stable surfaces admit a nice curvature
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estimate, called the stability inequality:

(2.6)

∫

M

|∇Σφ|2dvolΣ ≥
∫

M

|A|2φ2dvolΣ.

We wish to have an infinitesimal notion of stability. To that end, an integration by
parts shows that a surface is stable if and only if the stability operator L = ∆Σ + |A|2
has no negative eigenvalues. We call a zero eigenfunction of L a Jacobi field. If Σ is
complete in R3 then it is a special case of a well known result of Fischer-Colbrie and
Schoen [29] that Σ is stable if and only if there is a positive Jacobi field.

Unsurprisingly, stable minimal surfaces are quite a bit more rigid then general
minimal surfaces. In particular, a (specialization to R3 of a) result of Schoen, [56],
that will prove of great importance is the following Bernstein-type result for stable
minimal surfaces:

Theorem 2.1.6. Suppose Σ is a complete, stable, minimally immersed surface in R3,
then Σ is a plane.

2.1.2 Classical and modern constructions

We will now illustrate some important classical and modern examples of embedded
and complete minimal surfaces, both to illustrate the rich history of the theory and to
provide us a number of examples to refer to. Euler gave the first non-trivial minimal
surface, the catenoid, in 1744. It is topologically an annulus and is the surface of
revolution of a catenary (see Figure 2-1). In 1776, Meusnier found another example,
the helicoid, which is the surface traced out by a line rotating at a constant rate while
at the same time being translated parallel to the z-axis (see 2-2). As we will see, along
with the trivial complete embedded minimal surface, the plane, these three surfaces
can be shown to in some sense characterize the asymptotic geometry of any complete
embedded minimal surface. Further complete embedded minimal surfaces, though of
infinite topology, were discovered in the nineteenth century, a particularly beautiful
family of examples is due to Riemann, who discovered a periodic two parameter family
of surfaces with genus zero and and an infinite number of planar ends.

In 1983, Costa gave the first new example of an embedded minimal surface in over
a hundred years (see [27]) this was a genus one surface with two catenoidal and one
planar ends. Note that, Costa only wrote down the Weierstrass data for the surface
and did not rigorously prove it was embedded. This was done by Hoffman and Meeks
in [32]. In addition, they extended the construction and found embedded examples
of every genus (see [34]). The (unexpected) existence of these surfaces initiated a
burst of activity in the field. In 1993, using the Weierstrass representation, Hoffman,
Karcher, and Wei in [36] constructed an immersed genus one helicoid. Computer
graphics suggested it was embedded, but the existence of an embedded genus one
helicoid followed only after Hoffman and Wei proposed a new construction in [38].
They constructed their surface as the limit of a family of screw-motion invariant
minimal surfaces with periodic handles and a helicoidal end. Weber, Hoffman, and
Wolf confirmed the existence of such a family of surfaces in [59] and ultimately proved
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Figure 2-1: The catenoid (Courtesy of Matthias Weber)

Figure 2-2: The helicoid (Courtesy of Matthias Weber)
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Figure 2-3: A genus one helicoid (Courtesy of Matthias Weber)

their embeddedness in [61]. Hoffman, Weber, and Wolf conjecture that this surface
is not only the same surface as the one produced in [36], but is actually the “unique”
genus-one helicoid. Recently, Hoffman and White, in [40], used a variational argument
to construct an embedded genus-one helicoid, though whether their construction is
the same as the surface produced in [61] is unknown.

2.2 Notation

Throughout, unless otherwise stated, Σ will be a complete, non-flat, element of E(1, g),
the space of complete, properly embedded minimal surfaces with one end and finite
genus g. We set E(1) = ∪g≥0E(1, g) be the space of all complete, properly embedded
minimal surfaces with one end and finite genus and E(1, +) = ∪g>0E(1, g) to be
the set of such surfaces with positive genus. We note that a result of Colding and
Minicozzi, [24] (see also 3.2.2), allows one to drop “properly” from the definition of
E(1, g). That is, a complete, embedded minimal surface with one end and finite genus
is automatically properly embedded. Notice that as Σ has one end and is properly
embedded and complete in R3, there exists an R > 0 so that if Σ ∈ E(1, +) then one
of the components Σ of Σ ∩ BR is a compact surface with connected boundary and
the same genus as Σ. Thus, Σ\Σ has genus 0 and is a neighborhood of the end of Σ.
We will often refer to the genus of Σ when we wish not to specify a specific choice of
Σ, but rather to indicate some compact and connected subset of Σ of genus g.

Denote by Π : R3 → R2 the projection Π(x1, x2, x3) = (x1, x2). Let

(2.7) Cδ(y) =
{

x : (x3 − y3)
2 ≤ δ2

(

(x1 − y1)
2 + (x2 − y2)

2
)}

⊂ R
3
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be the complement of a double cone and set Cδ = Cδ(0). Extrinsic balls (i.e. in R
3)

of radius R and centered at x are denoted by BR(x). For Σ a surface in R3, if x ∈ Σ
then BR(x) is the intrinsic ball (in Σ) of radius R. We denote by Σx,R the component
of Σ ∩BR(x) containing x. Note that BR(x) ⊂ Σx,R with equality if and only if Σx,R

is flat.
We denote a polar rectangle as follows:

(2.8) Sθ1,θ2

r1,r2
= {(ρ, θ) | r1 ≤ ρ ≤ r2, θ1 ≤ θ ≤ θ2} .

For a real-valued function, u, defined on a polar domain Ω ⊂ R
+ ×R, define the map

Φu : Ω → R3 by Φu(ρ, θ) = (ρ cos θ, ρ sin θ, u(ρ, θ)). In particular, if u is defined on
Sθ1,θ2

r1,r2
, then Φu(S

θ1,θ2

r1,r2
) is a multivalued graph over the annulus Dr2

\Dr1
. We define

the separation of the graph u by w(ρ, θ) = u(ρ, θ + 2π) − u(ρ, θ). Thus, Γu := Φu(Ω)
is the graph of u, and Γu is embedded if and only if w 6= 0.

The graphs of interest to us throughout this paper will (almost) always be assumed
to satisfy the following flatness condition:

(2.9) |∇u| + ρ|Hess u| + 4ρ
|∇w|
|w| + ρ2 |Hess w|

|w| ≤ ǫ <
1

2π
.

Note that if w is the separation of a u satisfying (2.4) and (2.9), then w satisfies a
uniformly elliptic equation. Thus, if Γu is embedded then w has point-wise gradient
bounds and a Harnack inequality.
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Chapter 3

Colding-Minicozzi Theory

When we introduced minimal surfaces in Chapter 2, we allowed them to be immersed,
as, from certain perspectives, this is quite natural. However, as the Weierstrass rep-
resentation (2.3) shows, it is quite easy to construct many immersed minimal disks
and so structural results are correspondingly weak. When one demands that the sur-
faces are, in addition, embedded, one greatly reduces the possible space of surfaces
and extremely powerful structural results can be obtained. This is the point of view
that Colding and Minicozzi take in their ground-breaking study of the structure of
embedded minimal surfaces in [12, 19–22]. The key principle is that embeddedness
is analogous to positivity, i.e. embedded minimal surfaces are analogous to positive
solutions of second order elliptic equations. Recall, such positive solutions are nec-
essarily much more rigid than general solutions as, for instance, one has Harnack
inequalities.

The foundation of Colding and Minicozzi’s work is their description of embedded
minimal disks in [19–22], which underpins their more general results in [12]. Their
description is as follows: If the curvature is small, then the surface is nearly flat
and hence modeled on a plane (i.e. is, essentially, a single-valued graph). On the
other hand, suppose Σ ⊂ R3 is an embedded minimal disk with ∂Σ ⊂ ∂BR and
with large curvature, then it is modeled on a helicoid. That is, in a smaller ball the
surface consists of two multivalued graphs that spiral together and that are glued
along an “axis” of large curvature. Using this description, they derive very powerful
rigidity results and settle several outstanding conjectures. Their applications include:
developing a compactness theory for embedded minimal surfaces without area bounds
(Theorem 3.2.1); proving the so-called one-sided curvature estimate Theorem 3.1.8, an
effective version for embedded disks of the strong half-space theorem; and positively
answering the Calabi-Yau conjecture for embedded minimal surfaces of finite topology
(see Section 3.2.2). They also extend their work (in [12]) to minimal surfaces of
arbitrary finite genus.

In proving their result for disks, Colding and Minicozzi prove a number of quan-
titative results making the rough dichotomy given above more precise. Our work is
heavily based on these results and so we discuss them here in some detail. We state
the main theorems of [19–22] and discuss, as much as possible, the ideas that go into
of Colding and Minicozzi’s proofs.
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3.1 Structure of Embedded Minimal Disks

Let us first outline Colding and Minicozzi’s argument and then go into more detail
below. Suppose Σ is an embedded minimal disk with ∂Σ ⊂ ∂BR and with large
curvature. In order to study Σ, Colding and Minicozzi first locate points y ∈ Σ of
“large curvature”. By this they mean points which are an almost maximum (in a
ball of the appropriate scale) of the curvature. To make this rigorous, for a point
x ∈ Σ, they fix a scale sx > 0 that is proportional to the inverse of the curvature at x.
They call a pair (y, s) ∈ Σ∩R+, a “blow-up pair,” when y is an almost maximum for
curvature in the ball around y of radius s = sy. As an example, think of a point on
the axis of a helicoid and the scale s as the distance between the sheets (see Figure
5-2 for an illustration). The points y, so (y, s) is a blow-up pair, are the points of
large curvature. We note that standard blow-up arguments imply that, if there is
large curvature in a ball, relative to the size of the ball, then there must be be a
blow-up pair in the ball.

Let (y, s) be a blow-up pair, near y and on the scale s, the minimality and em-
beddedness force the surface to spiral like a helicoid. Indeed, Colding and Minicozzi
show that Σ contains a small multi-valued graph Σ̃1 near y. Using very delicate
arguments that rely on the embeddedness of Σ and the connectedness of ∂Σ, they
are able to show that the initial multi-graph found near y extends almost all the
way to the boundary (in Σ) as a multi-graph, Σ1. Using estimates for such graphs
coming from elliptic theory and a barrier construction that relies on Meeks and Yau’s
results [46, 47] they look between the sheets of Σ1 and show that there Σ consists
of exactly one other multi-graph Σ2. Using these two sheets, Colding and Minicozzi
show that there are regions of large curvature above and below the original sheets
and hence blow-up pairs. This allows them to iterate and form a “skeleton” of sheets.
By appealing to their “one-sided” curvature estimate (whose proof only relies on be-
ing able to find such a “skeleton”) they fill in the “skeleton” and obtain the claimed
structure for Σ.

3.1.1 Points of large curvature

We begin by stating more precisely what is meant by blow-up pair and then discuss
what is meant by the formation of small multi-graph and what quantitative informa-
tion can be derived about these multi-graphs. We will also very briefly indicate how
Colding and Minicozzi prove this.

Colding and Minicozzi have a number of equivalent definitions of what they mean
by blow-up pair, but we will use throughout the following definition:

Definition 3.1.1. The pair (y, s) ∈ Σ × R
+, is a (C) blow-up pair if

(3.1) sup
Σ∩Bs(y)

|A|2 ≤ 4|A|2(y) = 4C2s−2.

Here C is a (large) parameter that will be specified by some of the theorems. As
mentioned, these points are best understood by looking at a helicoid. For the helicoid,
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a point on the axis is a a blow-up point and the scale s is proportional to the scale
of the helicoid (i.e. the distance between sheets), in this case, C can be interpreted
as this proportionality constant (see also Figure 5-2).

By a standard blow-up argument if there is large curvature in a ball (measured
in terms of the scale of the ball) then there exists a blow-up pair in the ball. This is
Lemma 5.1 of [20]:

Lemma 3.1.2. If 0 ∈ Σ ⊂ Br0
, ∂Σ ⊂ ∂Br0

and supBr0/2∩Σ |A|2 ≥ 16C2r−2
0 then there

exists a pair (y, r1) with y ∈ Σ and r1 < r0 − |y| so (y, r1) is a C blow-up pair.

We then have the following result giving the existence of a small multi-graph near
a blow-up pair. This is Theorem 0.4 of [20]:

Theorem 3.1.3. Given N, ω > 1 and ǫ > 0, there exists C = C(N, ω, ǫ) > 0 so: Let
0 ∈ Σ ⊂ BR ⊂ R3 be an embedded minimal disk, ∂Σ ⊂ ∂BR. If (0, r0) is a C blow-up
pair for 0 < r0 < R, then there exist R̄ < r0/ω and (after a rotation) an N-valued
graph Σg ⊂ Σ over DωR̄\DR̄ with gradient ≤ ǫ, and distΣ(0, Σg) ≤ R̄.

To prove Theorem 3.1.3 Colding and Minicozzi first note the following conse-
quence of the Gauss-Bonnet theorem and minimality, which they call the Caccioppoli
inequality (Corollary 1.3 of [20]):

(3.2) t2
∫

Br0−2t

|A|2 ≤ r2
0

∫

Br0

|A|2(1 − r/r0)
2/2 =

∫ r0

0

∫ r

0

∫

Bρ(x)

|A|2

= 2(Area(Br0
) − πr2

0) ≤ r0ℓ(∂Br0
) − 2πr2

0.

That is the area of an intrinsic ball (or equivalently the length of its boundary) controls
the total curvature of a fixed sub-ball. There is also a reverse inequality (i.e. where
total curvature controls area) which holds for general surfaces and which Colding
and Minicozzi call the Poincaré inequality. The Caccioppoli inequality implies that,
when a minimal surface has extremely large curvature in a fixed extrinsic ball, it must
have large area. The relationship between total curvature and point-wise curvature
is based on the results of Choi and Schoen [11]. As a consequence, if the curvature is
large then there must be points of the surface that are intrinsically a fixed distance
apart, but extrinsically close. The fact that Σ is embedded implies that, by looking
near these points, one then has two disjoint minimal disks that are extrinsically very
close.

This heuristically suggests that the surfaces are nearly flat. Indeed, if these two
disks have an a priori curvature estimate then the disjointness implies they are almost
stable and hence one recovers such a flatness result (this is along the lines of [56],
i.e. Theorem 2.1.6). It turns out that this is even true without the a priori curvature
bounds (though without such curvature bounds this is only known a posteriori and
follows from the one-sided curvature bounds 3.1.8). Motivated by this, Colding and
Minicozzi, by very careful analysis, prove that away from a set of small area one does
have uniform curvature bounds so deduce that away from a set of small area the disk
is flat. This allows them to deduce Theorem 3.1.3.
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3.1.2 Extending the sheets

Using the initial small multi-graph, Colding and Minicozzi show that it can be ex-
tended, as a graph and within the surface Σ, nearly all the way to the boundary
of Σ. This result is one of the hardest parts of their argument and the proof relies
on understanding the very delicate interplay between the geometry of Σ and elliptic
estimates on the multi-graphs.

The main upshot of this analysis is Theorem 0.3 of [19]:

Theorem 3.1.4. Given τ > 0 there exist N, Ω, ǫ > 0 so that the following hold: Let
Σ ⊂ BR0

⊂ R3 be an embedded minimal disk with ∂Σ ⊂ BR0
. Ωr0 < 1 < R0/Ω and

Σ contains a N-valued graph Σg over D1\Dr0
with gradient ≤ ǫ and

(3.3) Σg ⊂
{

x2
3 ≤ ǫ2(x2

1 + x2
2)
}

then Σ contains a 2-valued graph Σd over DR0/Ω\Dr0
with gradient ≤ ǫ and (Σg)

M ⊂
Σd.

Here (Σg)
M indicates the “middle” 2-valued sheet of Σg. Combining this with the

Theorem 3.1.3 one immediately obtains the existence of a multi-graph near a blow-up
pair that extend almost all the way to the boundary. Namely, Theorem 0.2 of [20]:

Theorem 3.1.5. Given N ∈ Z
+, ǫ > 0, there exist C1, C2, C3 > 0 so: Let 0 ∈ Σ ⊂

BR ⊂ R3 be an embedded minimal disk, ∂Σ ⊂ ∂BR. If (0, r0) is a C1 blow-up pair
then there exists (after a rotation) an N-valued graph Σg ⊂ Σ over DR/C2

\D2r0
with

gradient ≤ ǫ and Σ ⊂ {x2
3 ≤ ǫ2(x2

1 + x2
2)} . Moreover, the separation of Σg over ∂Dr0

is bounded below by C3r0.

Note that the lower bound on the initial separation is not explicitly stated in
Theorem 0.2 of [20] but is proved in Proposition 4.15 of [20], as it will prove of crucial
importance in our applications we include it in the theorem.

3.1.3 Finding large curvature

The preceding two sections show the existence near a blow-up point of a multi-graph,
Σg, in Σ that extends almost all the way to the boundary. Colding and Minicozzi
next show that, “between the sheets” of Σg, Σ consists of exactly one other multi-
graph. That is, we have that, at least part of, Σ looks like (a few sheets of) a helicoid.
Precisely, one has Theorem I.0.10 of [22]:

Theorem 3.1.6. Suppose 0 ∈ Σ ⊂ B4R is an embedded minimal disk with ∂Σ ⊂ ∂B4R

and Σ1 ⊂ {x3 ≤ x2
1 + x2

2} ∩ Σ is an (N + 2)-valued graph of u1 over D2R\Dr with
|∇u1| ≤ ǫ and N ≥ 6. There exist C0 > 2 and ǫ0 > 0 so that if R ≥ C0r1 and ǫ0 ≥ ǫ,
then E1 ∩ Σ\Σ1 is an (oppositely oriented) N-valued graph Σ2.

Here E1 is the region between the sheets of Σ1:

(3.4) {(r cos θ, r sin θ, z) :

2r1 < r < R,−2π ≤ θ < 0, u1(r, θ − Nπ) < z < u1(r, θ + (N + 2)π)}.
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The proof of this relies uses Meeks and Yau’s solution of the embedded plateau
problem for 3-manifolds with mean convex boundary [46,47]. Colding and Minicozzi
apply this result to the region E1 to construct a barrier, which they use to prove the
theorem.

Thus, near a blow-up point there are two multi-graphs that spiral together and
extend within Σ almost all the way to the boundary of Σ. This allows Colding and
Minicozzi to use the following result, from [21], to deduce that there are regions of
large curvature above and below the original blow-up pairs (and hence by Lemma
3.1.2 blow-up points there). They use Corollary III.3.5 of [21]:

Corollary 3.1.7. Given C1 there exists C2 so: Let 0 ∈ Σ ⊂ B2C2r0
be an embedded

minimal disk. Suppose Σ1, Σ2 ⊂ Σ∩{x2
3 ≤ (x2

1 + x2
2)} are graphs of ui satisfying (2.9)

on S−2π,2π
r0,C2r0

, u1(r0, 2π) < u2(r0, 0) < u1(r0, 0), and ν ⊂ ∂Σ0,2r0
a curve from Σ1 to Σ2.

Let Σ0 be the component of Σ0,C2r0
\(Σ1∪Σ2∪ν) which does not contain Σ0,r0

. Suppose
∂Σ ⊂ ∂B2C2r0

then

(3.5) sup
x∈Σ0\B4r0

|x|2|A|2(x) ≥ 4C2
1 .

If one desired to prove only that there was one region of large curvature one would
note that |x|2|A|2 ≤ C in Σ implies that the curvature, of Σ, has a certain growth rate.
In this case, Colding and Minicozzi can show that, if C is small enough, this growth
rate forces Σ to be a single graph outside of a ball of a certain size, which contradicts
the existence of the two multi-graphs. It can be shown that the multi-graphs have
faster than quadratic curvature decay (this is similar to Bers’ Theorem 2.1.5) and
so this region of large curvature is either above or below the multi-graph. To get
that there are two regions of large curvature, one must use that the two multi-graphs
coming from Theorem 3.1.6 are intrinsically close (see for instance the last statement
of 3.1.5). Thus, these multi-graphs, together with a “short connecting” curve, ν,
separate (a subset of) Σ into two regions, one above the graphs, and one below.
Arguing as before, one still shows that both these regions contain large curvature.

Using Corollary 3.1.7, one sees how a “skeleton” of multi-graphs can be iteratively
constructed. Notice that, a priori, we have very little control on the structure of this
“skeleton,” because the new blow-up pairs only lie above and below the original one
in a very weak sense.

3.1.4 One-sided curvature estimate

As we have seen, in an embedded minimal disk with large curvature one can find a
helicoidal “skeleton” of the surface. Colding and Minicozzi exploit this to show an
extremely powerful curvature estimate for embedded disks that are close to, and on
one side of, a plane. This one-sided curvature estimate not only significantly restricts
the structure of the “skeleton,” but also allows one to fill it in, and so recover the
structure of nearly the entire disk. In addition, the one-sided curvature estimate is of
great importance in its own right; it is, essentially, an effective version, for embedded
disks, of the strong half-space theorem. This last theorem, proved by Hoffman and
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Σ

Bǫr0

Br0

B2r0

x3 = 0

Figure 3-1: The one-sided curvature estimate

Meeks in [35], says that any complete and proper minimal immersion that lies on one
side of a plane is necessarily a plane. The effective version says that an embedded
disk that lies on one side of a plane, and is close to the plane, has a uniform curvature
estimate. Note that rescalings of the catenoid show that the topological restriction is
essential. The simplest one-sided curvature estimate is Theorem 0.2 of [22]:

Theorem 3.1.8. (see Figure 3-1) There exists ǫ > 0, so that if Σ ⊂ Br0
∩{x3 > 0} ⊂

R3 is an embedded minimal disk with ∂Σ ⊂ B2r0
, then for all components, Σ′, of

Br0
∩ Σ which intersect Bǫr0

we have supΣ′ |AΣ|2 ≤ r−2
0

This result can be extend to the more general situation where one replaces the
plane with a general embedded minimal surface. Namely, we have Corollary 0.4
of [22]:

Corollary 3.1.9. There exist c > 1, ǫ > 0 so that the following holds: Let Σ1

and Σ2 ⊂ Bcr0
⊂ R

3 be disjoint embedded minimal surfaces with ∂Σi ⊂ ∂Bcr0
and

Bǫr0
∩Σi 6= ∅ . If Σ1 is a disk, then for all components Σ′

1 of Br0
∩Σ1 which intersect

Br0
:

(3.6) sup
Σ′

|A|2 ≤ r−2
0 .

An important corollary of this theorem is the specialization of the above to a
minimal disk, Σ, that contains a double-valued graph. In this case, one obtains
uniform curvature estimates for Σ outside of a cone whose axis is transverse to the
multi-graph. Precisely, one has Corollary I.1.9 of [22]:

Corollary 3.1.10. (see Figure 3-2) There exists δ0 > 0 so that the following holds:
Let Σ ⊂ B2R be an embedded minimal disk with ∂Σ ⊂ ∂B2R . If Σ contains a 2-valued
graph Σd ⊂ {x2

3 ≤ δ2
0(x

2
1 + x2

2} over DR\Dr0
with gradient ≤ δ0, then each component

of BR/2 ∩ Σ\ (Cδ0(0) ∪ B2r) is a multi-valued graph with gradient ≤ 1

Remark 3.1.11. In the above Cδ0 represents the cone with axis the x3-axis, that is
the complement of the set we define in Section 2.2.

This last corollary makes it clear that the blow-up points that lie above and below
a given point actually lie outside of Cδ0 (i.e. within a cone with axis transverse to
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Bs(y)
B2r0

Σ′

Σd

Cδ(0)

Figure 3-2: The one-sided curvature estimate in a cone

the sheets of the graph) and so are actually a fixed height above and below the given
one. This restricts the structure of the “skeleton” considered in the previous section.
Moreover, the corollary allows one to fill in the “skeleton” and see that the disk really
does have the structure of two multi-graphs that spiral together and are glued along
an axis.

The idea of the proof of Theorem 3.1.8 is to suppose one had a minimal disk,
Σ, near and on one side of a plane but with very large curvature in B1 ∩ Σ. If this
were true, then there would be a blow-up pair (y0, s0) with y0 ∈ B1 ∩ Σ (and s0

very small). Thus, two multi-graphs would form near y0 and so there is another
blow-up pair (y1, s1) below (y0, s0). Continuing in this fashion Σ would eventually
be forced to spiral through the plane, yielding a contradiction. There are a number
technical difficulties making this argument rigorous. The main problem is due to the
weak a priori understanding on what “below” means. By some very careful analysis,
Colding and Minicozzi are nevertheless able to resolve these difficulties, and we refer
the interested reader to [22] for the details.

A final important consequence of the one-sided curvature estimate is that the axis
along which the curves are glued lies in an intersection of cones and so is “Lipschitz”.
This follows as once one has a single blow-up point, one can use the associated graph
that forms, to get curvature bounds outside of a cone (of a uniform angle) with
fulcrum at the blow-up point. This forces all other blow-up pairs to lie within this
cone.

3.2 Some Applications

The theory developed in [19–22] to study embedded minimal disks and outlined above
has had a number of important applications. We introduce here those that are most
important to our own work. The first of these topics is the lamination theory of
Colding and Minicozzi, which gives a compactness for sequences of embedded disks
subject to very mild conditions (in particular without area or curvature bounds). We
next discuss Colding and Minicozzi’s proof of the Calabi-Yau conjecture for embedded
minimal surfaces of finite topology. Finally, we will briefly sketch their extension of
the lamination result to sequences admitting more general topologies.
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3.2.1 Lamination theory

The ellipticity of the minimal surface equation suggests that one should have nice
compactness results for sequences of minimal surfaces. Classically, one does obtain
such compactness after assuming uniform area or curvature bounds. In the former
case one only has convergence in a weak sense, whereas in the later, the Arzela-
Ascoli theorem and Schauder estimates allow one to obtain smooth sub-sequential
convergence (though, without area bounds the limit is not necessarily a surface). For
sequences of embedded minimal disks, Colding and Minicozzi are able to prove a com-
pactness result that only requires a very mild geometric condition on the boundaries
of the disks and in particular does not require area or curvature bounds. Roughly
speaking, their structural result implies that either there is a uniform curvature bound
a sub-sequence or else a sub-sequence is modeled (locally) on the singular behavior
of the homothetic blow-down of the helicoid. This is Theorem 0.1 of [22]:

Theorem 3.2.1. Let Σi ⊂ BRi
= BRi

(0) ⊂ R3 be a sequence of embedded minimal
disks with ∂Σi ⊂ ∂BRi

where Ri → ∞. If supB1∩Σi
|A|2 → ∞ then there exists a

sub-sequence, Σj, and a Lipschitz curve S : R → R
3 such that after a rotation of R

3:

1. x3(S(t)) = t.

2. Each Σj consists of exactly two multi-valued graphs away from S (which spiral
together).

3. for each 1 > α > 0 Σj\S converges in the Cα-topology to the foliation, F =
{x3 = t}t of R

3.

4. supBr(S(t))∩Σj
|A|2 → ∞ for all r > 0, t ∈ R.

Notice that away from the singular set S, the convergence is classical, whereas
at the singular set the curvature must blow-up. Also note that the assumption that
Ri → ∞ is essential, as is shown by examples constructed by Colding and Minicozzi
in [17] (see also Chapter 5 and in particular Figure 5-2). One would hope to deduce
Theorem 3.2.1 directly from the description of embedded disks given in Section 3.1.
However, it is not this easy because the description of embedded disks is a local
statement, whereas the compactness theorem is global in nature – a point made clear
by the examples of [17]. The results needed to bridge this gap can be found in [15].

3.2.2 The Calabi-Yau conjecture

In 1965, Calabi conjectured that there are no bounded complete minimal hyper-
surface in Rn (see [8]). If one allows the surface to be immersed, this is false, for
example Nadirashvili in [52] constructs a complete minimal immersion lying within
the unit ball of R3. However, when one additionally demands that the surface be
embedded (and of finite topology in R3), Colding and Minicozzi, in [24], show that not
only is the surface necessarily unbounded, but that several of Calabi’s more ambitious
conjectures are true. Indeed, they show that any such surface is actually properly
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embedded. Consequently, we may take E(1, g) to be the set of complete, embedded
minimal surfaces of genus g and with one end, as these conditions automatically imply
the surface is properly embedded.

The key tool Colding and Minicozzi use is what they call the “chord-arc” bound
for embedded minimal disks. This is Theorem 0.5 of [24], which roughly shows that,
near a point of large curvature, extrinsic distance controls intrinsic distance:

Theorem 3.2.2. There exists a constant C > 0 so that if Σ ⊂ R3 is an embed-
ded minimal disk, B2R = B2R(0) is an intrinsic ball in Σ\∂Σ of radius 2R, and
supBr0

|A|2 > r−2
0 where R > r0 , then for x ∈ BR

(3.7) CdistΣ(x, 0) < |x| + r0.

This theorem allows one to easily deduce that complete, embedded minimal disks
are properly embedded. Namely, either Σ is flat and so is necessarily properly embed-
ded, or outside a sufficiently large intrinsic ball one may apply the chord-arc bounds
and get a two-sided comparison between extrinsic and intrinsic distance. The gener-
alization to embedded minimal surfaces of finite topology is not much more difficult.

The chord-arc bounds are themselves an easy consequence (using the one-sided
curvature estimate) of the following weak chord-arc bound (Proposition 1.1 of [24]):

Proposition 3.2.3. There exists δ1 > 0 so that if Σ ⊂ R3 is an embedded minimal
disk, then for all intrinsic balls BR(x) in Σ\∂Σ the component Σx,δ1R of Bδ1R(x) ∩ Σ
containing x satisfies

(3.8) Σx,δ1R ⊂ BR/2(x).

This result is proved by Colding and Minicozzi using their structural theory and
a blow-up argument, we refer the reader to [24] for more details.

3.2.3 Generalizations to non-trivial topology

In [12], Colding and Minicozzi generalize their lamination theory for minimal disks
to a compactness result that allows for more or less arbitrary sequences of minimal
surfaces with finite (and uniformly bounded) genus. To do so, they must allow for
a more general class of singular models, as is clear from considering a rescaling of
the catenoid. In order to prove such a compactness result, they must also develop
a structural theory for a more general class of topological types. Surfaces modeled
on the neck of a catenoid form an important such class, one that is characterized by
having genus zero and disconnected boundary. Another important class, especially for
our purposes, are surfaces of finite genus and connected boundary. This second class
of surfaces, because they have connected boundary, turn out to be structurally very
similar to disks. Indeed, most of the results of [19–22] hold for them (in a suitably
form) and with only slight modifications of the proofs.

As we will use results from [12] in Chapters 6 and (even more so) in Chapter 7,
we give a bit more details about the theory, though provide only a sketch. The most
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general lamination result of [12] is very similar to Theorem 3.2.1 but the lamination
L can no longer be guaranteed to foliate all of R3 and the singular set S is in general
much more complicated.

More precisely, suppose Σi is a sequence of embedded minimal surfaces, with a
uniform bound on the genus and ∂Σi ⊂ BRi

with Ri → ∞. Colding and Minicozzi
show that if the curvature of the sequence blows up at a point y ∈ R

3 (i.e. if for all
r > 0, supi supBr(y)∩Σi

|A|2 = ∞), then after a rotation, a sub-sequence Σi converge
to the singular lamination L\S in the Cα topology (α ∈ (0, 1)) and the curvature
blows up at all points of S. Here L = {x3 = t}t∈I , {x3(y) : y ∈ S} = I and I is
a closed subset of R3 (this is Theorem 0.14 of [12]). Note, if the Σi are disks then
Theorem 3.2.1 implies that I = R and S is a Lipschitz graph over the x3-axis (and
is in fact is a line).

More generally, the topology of the sequence restricts I and gives more information
about convergence near S (and structure of S). We distinguish between two types
of singular points y ∈ S. Heuristically, the distinction is between points where the
topology of the sequence does not concentrate (i.e. on small scales near the point all
the Σi are disks) and points where it does (i.e. on small scales near the point all the
Σi contain necks). This is the exact description if the genus of the surfaces is zero,
but must be refined for sequences with positive genus. Following [12], we make this
precise for a sequence Σi converging to the lamination L with singular set S:

Definition 3.2.4. We say y ∈ S is an element of Sulsc if there exist both r > 0 fixed
and a sequence ri → 0 such that Br(y)∩Σi and Bri

(y)∩Σi have the same genus and
every component of Bri

(y) ∩ Σi has connected boundary.

Definition 3.2.5. We say y ∈ S is an element of Sneck if there exist both r > 0 fixed
and a sequence ri → 0 such that Br(y)∩Σi and Bri

(y)∩Σi have the same genus and
Bri

(y) ∩ Σi has at least one component with disconnected boundary.

If the Σi are the homothetic blow-down of helicoid or of a genus-one helicoid,
then 0 is a element of Sulsc, whereas if the Σi are the homothetic blow-down of a
catenoid then 0 is an element of Sneck. Colding and Minicozzi show that near a point
of Sulsc this is the model behavior, i.e. locally the sequence looks like the homothetic
blow-down of a helicoid. On the other hand, near a point of Sneck the convergence
near y is modeled on the homothetic blow-down of a catenoid.

One of the major results of [12], is to give refinements of the general compactness
theorem based on more careful analysis of the topology of the sequence. The most
powerful of these is the no-mixing theorem (i.e. Theorem 0.4 of [12]), which states
that, up to a passing to a sub-sequence, either S = Sulsc or S = Sneck. This is
particularly, important as ULSC sequences (i.e. sequences where S = Sulsc) have
a great deal of structure. Indeed, in this case Theorem 0.9 of [12] tells us that we
(nearly) have the same behavior of Theorem 3.2.1, i.e. I = R and S is either a single
line parallel to the x3-axis or the union of two lines. In the latter case, the global
picture is that of the degeneration of the Riemann examples; as this case must be
considered in our work in only a handful of places, we defer a more detailed discussion
to Section 6.4.2. On the other hand, when S = Sneck there is in general no additional
structure to S and I may be a proper subset of R.
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Chapter 4

Uniqueness of the Helicoid

In this chapter we discuss the so called “uniqueness of the helicoid,” proved by Meeks
and Rosenberg (Theorem 0.1 in [45]):

Theorem 4.0.6. The only elements of E(1, 0) are planes and helicoids.

Meeks and Rosenberg’s proof, which we will outline in Section 4.1, depends cru-
cially on the lamination theory and one-sided curvature estimate of Colding and
Minicozzi (see [22]). Their proof also uses quite sophisticated (and subtle) complex
analytic arguments. By making more direct use of the results of Colding and Mini-
cozzi on the structure of embedded minimal disks, we present a more geometric and
significantly simpler proof. As we will see in Chapter 6, this proof generalizes quite
easily to the case of embedded minimal surfaces with finite genus and one end.

4.1 Meeks and Rosenberg’s Approach

In [45], Meeks and Rosenberg apply Colding and Minicozzi’s lamination theory, The-
orem 3.2.1, to show that a non-flat, complete embedded minimal disk, Σ, must be the
helicoid (i.e. the helicoid is “unique”). Their approach uses the lamination theory to
gain a (weak) understanding of the asymptotic geometry of Σ. Prior to to the work of
Colding and Minicozzi, there were no tools available to gain such an understanding of
the asymptotic geometry and essentially nothing was known without strong assump-
tions. With this (weak) information about the end Meeks and Rosenberg then take
a classical approach to understanding the surface, in particular they make heavy use
of some rather subtle complex analytic arguments.

In order to get at the asymptotic structure of, Σ, a non-flat element of E(1, 0),
Meeks and Rosenberg consider the homothetic blow-down of Σ. That is they take
a sequence λi ց 0 of positive numbers and consider λiΣ a sequence of rescalings of
Σ. Such a sequence satisfies the conditions of Colding and Minicozzi’s lamination
theorem and must (as Σ is non-flat) having curvature blowing up at 0. Thus, it
contains a sub-sequence converging to a singular lamination. That is, up to a rotation
of R

3, away from some Lipschitz curve, the λiΣ converge to a foliation of flat parallel
planes transverse to the x3-axis. Meeks and Rosenberg argue that this foliation is
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independent of the choice of blow-down (i.e. the rotation is independent) and so gives
a sort of “tangent cone at infinity” to Σ. Thus, weakly, the surface is asymptotic to
a helicoid, which they use to conclude that the Gauss map of Σ omits the north and
south poles. Due to their reliance on the lamination theory, this, like many of their
arguments, is based on a somewhat involved proof by contradiction. An important
(and easily derived) consequence is that, ∇Σx3 6= 0 and so locally x3 together with
it’s harmonic conjugate x∗

3 give a holomorphic coordinate z = x3 + ix∗
3.

This asymptotic structure, combined with a result on parabolicity of Collin, Kus-
ner, Meeks and Rosenberg [26], is then used to show that z is actually a proper confor-
mal diffeomorphism between Σ and C and hence the end is conformally a punctured
disk. Here a surface with boundary is said to be parabolic if two bounded harmonic
functions whose values agree on the boundary are in fact identically equal. For in-
stance, the closed disk with a point removed from the boundary is parabolic whereas
the closed disk with an open interval removed from the boundary is not. The re-
sult of [26] implies that Σ intersected with half-spaces {±x3 ≥ h} is parabolic. As
parabolic domains can be rather subtle, quite a bit of work goes into deducing that
that Σ is conformally equivalent to C and that z is actually a conformal diffeomor-
phism between the two spaces.

Finally, Meeks and Rosenberg look at level sets of the log of the stereographic
projection of the Gauss map and use a Picard type argument to show that this
holomorphic map does not have an essential singularity at ∞ and in fact is linear.
Using the Weierstrass representation, they conclude that Σ is the helicoid.

4.2 Outline of the Argument

By using the work of Colding and Minicozzi more directly, we are able to get a much
stronger and more explicit description of the asymptotic geometry, which significantly
simplifies the argument. Following Colding and Minicozzi (and fundamentally using
their work), we show Σ contains a central “axis” of large curvature away from which it
consists of two multi-valued graphs spiraling together, one strictly upward, the other
downward. Additionally, the “axis” is shown to be nearly orthogonal to the sheets of
the graph. Notice this strict spiraling and “orthogonality” of the axis only follows as
Σ is complete, and need not hold for general embedded minimal disks.

More precisely we have (see Figure 6-1):

Theorem 4.2.1. There exist subsets of Σ, RA and RS , with Σ = RA∪RS such that,
after possibly rotating R3, RS can be written as the union of two (oppositely oriented)
multivalued graphs u1 and u2 with non-vanishing angular derivative. Further, there
exists ǫ0 > 0 such that on RA, |∇Σx3| ≥ ǫ0.

Remark 4.2.2. Here ui multivalued means that it can be decomposed into N -valued
ǫ-sheets (see Definition 4.3.1) with varying center. The angular derivative is then
with respect to the obvious polar form on each of these sheets. For simplicity we will
assume throughout that both ui are ∞-valued.
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In order to establish this decomposition, we first use the explicit existence of
multi-valued graphs to get the strict spiraling in RS. An application of the proof of
Rado’s theorem (see [55] or [54]), then gives non-vanishing of |∇Σx3| on RA and, by
a Harnack inequality, the uniform lower bound. Crucially,

Proposition 4.2.3. On Σ, after a rotation of R3, ∇Σx3 6= 0 and, for all c ∈ R,
Σ ∩ {x3 = c} consists of exactly one properly embedded smooth curve.

This implies that z = x3+ix∗
3 is a holomorphic coordinate on Σ. By looking at the

stereographic projection of the Gauss map, g, in RS we show that z maps onto C and
so Σ is conformally the plane. This follows from the control on the behavior of g due to
strict spiraling. Indeed, away from a neighborhood of RA, Σ is conformally the union
of two closed half-spaces with log g = h providing the identification. It then follows
that h is also a conformal diffeomorphism and hence h(p) = λz(p). The Weierstrass
representation (2.3) and embeddedness together imply that Σ is the helicoid.

This Chapter is based on [3].

4.3 Geometric Decomposition

4.3.1 Initial sheets

As we saw in Chapter 3, multivalued minimal graphs are the basic building blocks
Colding and Minicozzi use to study the structure of minimal surfaces. We will also
make heavy use of the properties of such graphs and so introduce the following nota-
tion:

Definition 4.3.1. A multivalued minimal graph Σ0 is an N-valued (ǫ-)sheet (centered
at 0 on the scale 1 ), if Σ0 = Γu and u, defined on S−πN,πN

1,∞ , satisfies (2.4), (2.9),
limρ→∞ ∇u(ρ, 0) = 0, and Σ0 ⊂ Cǫ.

Using Simons’ inequality, Corollary 2.3 of [15] shows that on the one-valued middle
sheet of a 2-valued graph satisfying (2.9), the hessian of u has faster than linear decay.
Thus, one has a Bers like result on asymptotic tangent planes (see 2.1.5) for such
graphs when they are defined over unbounded annuli (see also [14]). In particular,
our normalization at ∞ of an ǫ-sheet is well defined. Indeed, the normalization at ∞
gives gradient decay for Γu, an ǫ-sheet,

(4.1) |∇u| ≤ Cǫρ−5/12.

We now give a condition for the existence of ǫ-sheets. Roughly, all that is required
is a point with large curvature relative to nearby points, that is a blow-up pair. Recall,

Definition 4.3.2. The pair (y, s), y ∈ Σ, s > 0, is a (C) blow-up pair if

(4.2) sup
Σ∩Bs(y)

|A|2 ≤ 4|A|2(y) = 4C2s−2.
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As we saw in Chapter 3, near a blow-up pair, there is a large multi-valued graph
(see Theorem 3.1.3, i.e. Theorem 0.4 of [20]). In particular, after a suitable rotation
we obtain an ǫ-sheet. For a more thorough treatment of this in the context of complete
disks, see Theorem 4.5.1 in Section 4.5.

Once we have one ǫ-sheet, we can use Colding and Minicozzi’s one-sided curvature
estimate, Theorem 3.1.8 (i.e. Theorem 0.2 of [22]) to extend the graph (and (2.9))
from an ǫ-sheet to the outside of a wide cone (see Figure 3-2). Recall, there is
a uniform curvature bound on embedded minimal disks close to, but on one side
of, an embedded minimal surface. Thus, using the initial ǫ-sheet as this “nearby”
surface, the embeddedness of Σ implies that, outside of a cone, all components of
Σ are graphs. A barrier argument then shows that there are only two such pieces.
Namely, by Theorem 3.1.6 (i.e. I.0.10 of [22]), the parts of Σ that lie in between an
ǫ-sheet make up a second multi-valued graph. Furthermore, the one-sided curvature
estimates gives gradient estimates which, when coupled with elliptic estimates on the
multi-valued graphs, reveal that this multi-valued graph actually contains an ǫ-sheet.
Thus, around a blow-up point, Σ consists of two ǫ-sheets spiraling together.

We now make the last statement precise. Suppose u is defined on S−πN−3π,πN+3π
1/2,∞

and Γu is embedded. We define E to be the region over D∞\D1 between the top and
bottom sheets of the concentric subgraph of. That is (see also (3.4)):

(4.3) E = {(ρ cos θ, ρ sin θ, t) :

1 ≤ ρ ≤ ∞,−2π ≤ θ < 0, u(ρ, θ − πN) < t < u(ρ, θ + (N + 2)π}.

Using Theorem 3.1.6 (i.e. Theorem I.0.10 of [22]), Theorem 4.5.1, and the one-sided
curvature estimate, we have:

Theorem 4.3.3. Given ǫ > 0 sufficiently small, there exist C1, C2 > 0 so: Suppose
(0, s) is a C1 blow-up pair. Then there exist two 4-valued ǫ-sheets Σi = Γui

(i = 1, 2)
on the scale s which spiral together (i.e. u1(s, 0) < u2(s, 0) < u1(s, 2π)). Moreover,
the separation over ∂Ds of Σi is bounded below by C2s.

Remark 4.3.4. We refer to Σ1, Σ2 as (ǫ-)blow-up sheets associated with (y, s).

Proof. Choose ǫ0 > 0 and N0 as in Theorem 3.1.6). For ǫ < ǫ0 choose Nǫ, δǫ as in
the proof of Theorem 4.5.1. With N − 6 = max {Nǫ + 4, N0} denote by C ′

1, C
′
2 the

constants given by Theorem 4.5.1. Thus, if (0, r) is a C ′
1 blow-up pair then there

exists an N -valued ǫ-sheet Σ′
1 = Γu′

1
on scale r inside of Σ. Applying Theorem

I.0.10 to u′
1, we see that Σ ∩ E\Σ′

1 is given by the graph of a function u′
2 defined on

S−πNǫ−4π,πNǫ+4π
2r,∞ . In particular, for u′

2 on S−4π,4π
2eNǫr,∞ we have (2.9) as long as we can

control |∇u′
2|. But here we use one-sided curvature (and the ǫ-sheet Σ′

1). Namely,
given α = min {ǫ/2, δǫ}, one-sided curvature estimates allow us to choose δ0 > 0 so
that in the cone Cδ0 (and outside a ball) Σ is graphical with gradient less than α.
By (4.1), there exists r1 > 0 such that |∇u′

1| ≤ δ0 on S−5π,5π
r1,∞ and this 5-valued graph

is contained in Cδ0\Br1
. Moreover, since five sheets of u′

1 are inside of Cδ0 , the four
concentric sheets of u′

2 are also in that cone. Set γ = max
{

2eNǫ , 1
}

. Let u1 and u2

be given by restricting u′
1 and u′

2 to S−4π,4π
γr1,∞ and define Σi = Γui

.
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Set C1 = γC ′
1, so if (0, s) is a C1 blow-up pair then Σi will exist on scale s.

Integrating (2.9), the lower bound C ′
2 gives a lower bound on initial separation of Σ1.

We find C2 by noting that if the initial separation of Σ2 was too small there would
be two sheets between one sheet of Σ1.

4.3.2 Blow-up pairs

Since Σ is not a plane, we can always find at least one blow-up pair (y, s). We
then use this initial pair to find a sequence of blow-up pairs forming an “axis” of
large curvature. The key results we need are Lemma 3.1.2 (i.e Lemma 5.1 of [20]),
recall this lemma says that as long as curvature is large enough in some ball we can
find a blow-up pair in the ball, and Corollary 3.1.7 (i.e. Corollary III.3.5 of [21]),
which guarantees points of large curvature above and below blow-up points. Colding
and Minicozzi, in Lemma 2.5 of [24], provide a good overview of this process of
decomposing Σ into (what we call) blow-up sheets. The main result is the following:

Theorem 4.3.5. For 1/2 > γ > 0 and ǫ > 0 both sufficiently small, let C1 be
given by Theorem 4.3.3. Then there exists Cin > 4 and δ > 0 so: If (0, s) is a
C1 blow-up pair then there exist (y+, s+) and (y−, s−), C1 blow-up pairs, with y± ∈
Σ ∩ BCins\ (B2s ∪Cδ), x3(y+) > 0 > x3(y−), and s± ≤ γ|y±|.

Hence, given a blow-up pair, we can iteratively find a sequence of blow-up pairs
ordered by height and lying within a cone, with the distance between subsequent
pairs bounded by a fixed multiple of their scale.

4.3.3 Asymptotic helicoids

We now wish to show that an ǫ-sheet, Γu, strictly spirals for sufficiently large radius.
The key result needed to show this is Lemma 14.1 of [18]. This lemma and the gradient
decay (4.1) implies that ǫ-sheets can be approximated by a combination of planar,
helicoidal, and catenoidal pieces. That is, there is a “Laurent expansion” for the
almost holomorphic function ux − iuy. This result allows us to bound the oscillation
on broken circles C(ρ) := S−π,π

ρ,ρ of uθ, which yields asymptotic lower bounds for uθ.
The precise statement of the lemma is:

Lemma 4.3.6. Given Γu, a 3-valued ǫ-sheet on scale 1, set f = ux − iuy. Then for
r1 ≥ 1 and ζ = ρeiθ with (ρ, θ) ∈ S−π,π

2r1,∞

(4.4) f(ζ) = cζ−1 + g(ζ)

where c = c(r1, u) ∈ C and |g(ζ)| ≤ C0r
−1/4
1 |ζ |−1 + C0ǫr

−1
1 |w(r1,−π)|.

The proof is an exercise in integration by parts using the fact that the faster than
linear decay on the hessian of an initial sheet gives good decay for ∆u. Using this
approximation result, we now bound the oscillation:
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Lemma 4.3.7. Suppose Γu is a 3-valued ǫ-sheet on scale 1. Then for ρ ≥ 2, there
exists a universal C > 0 so:

(4.5) osc
C(ρ)

uθ ≤ Cρ−1/4 + Cǫ|w(ρ,−π)|.

Proof. Using Lemma 4.3.6 and the identification uθ(ρ, θ) = −Im ζf(ζ) for ζ = ρeiθ,
we compute:

osc
C(ρ)

uθ = sup
|ζ|=ρ

Im (−c − ζg(ζ))− inf
|ζ|=ρ

Im (−c − ζg(ζ))

≤ 2 sup
|ζ|=ρ

|ζ ||g(ζ)| ≤ 4C0ρ
−1/4 + 2C0ǫ|w(ρ/2,−π)|.

The last inequality comes from Lemma 4.3.6, setting 2r1 = ρ. Finally, integrate (2.9)
to get the bound |w|(ρ/2,−π) ≤ 4|w|(ρ,−π) and choose C sufficiently large.

Integrating uθ on C(ρ) gives w(ρ,−π), which yields a lower bound on supC(ρ) uθ

in terms of the separation. The oscillation bound of (4.5) then gives a lower bound
for uθ. Indeed, for ǫ sufficiently small and large ρ, uθ is positive.

Proposition 4.3.8. There exists an ǫ0 so: Suppose Γu is a 3-valued ǫ-sheet on scale
1 with ǫ < ǫ0 and w(1, θ) ≥ C2 > 0. Then there exists C3 = C3(C2) ≥ 2, so that on
S−π,π

C3,∞:

(4.6) uθ(ρ, θ) ≥ C2

8π
ρ−ǫ.

Proof. Since
∫ π

−π
uθ(ρ, θ) dθ = w(ρ,−π) we see w(ρ,−π) ≤ 2π supC(ρ) uθ. Using the

oscillation bound (4.5) then gives the lower bound:

(4.7) (1 − 2πCǫ)w(ρ,−π) − 2πCρ−1/4 ≤ 2π inf
C(ρ)

uθ.

Pick ǫ0 so that 2πCǫ0 ≤ 1/2. Integrating (2.9) yields w(ρ, θ) ≥ w(1, θ)ρ−ǫ ≥ C2ρ
−ǫ.

Thus,

(4.8) inf
C(ρ)

uθ ≥
C2

4π
ρ−ǫ − Cρ−1/4.

Since ǫ < 1/4, just choose C3 large.

4.3.4 Decomposition of Σ

In order to decompose Σ, we use the explicit asymptotic properties found above to
show that, away from the “axis,” (ultimately RA) Σ consists of two strictly spiraling
graphs. In particular, this implies that all intersections of Σ with planes transverse
to the x3-axis have exactly two ends. The proof of Rado’s theorem then gives that
∇Σx3 is non-vanishing and so each level set consists of one unbounded smooth curve.
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A curvature estimate and a Harnack inequality then give the lower bound on |∇Σx3|
near the axis. To prove Theorem 4.2.1 we first construct RS.

Lemma 4.3.9. There exist constants C1, R1 and a sequence (yi, si) of C1 blow-up
pairs of Σ so that: x3(yi) < x3(yi+1) and for i ≥ 0, yi+1 ∈ BR1si

(yi) while for i < 0,
yi−1 ∈ BR1si

(yi). Moreover, if R̃A is the connected component of
⋃

i BR1si
(yi)∩Σ con-

taining y0 and RS = Σ\R̃A, then RS has exactly two unbounded components, which
are (oppositely oriented) multivalued graphs u1 and u2 with ui

θ 6= 0. In particular,
∇Σx3 6= 0 on the two graphs.

Proof. Fix ǫ < ǫ0 where ǫ0 is given by Proposition 4.3.8. Using this ǫ, from Theorem
4.3.3 we obtain the blow-up constant C1 and denote by C2 the lower bound on initial
separation. Suppose 0 ∈ Σ and that (0, 1) is a C1 blow-up pair. From Theorem 4.3.5
there exists a constant Cin so that there are C1 blow-up pairs (y+, s+) and (y−, s−)
with x3(y−) < 0 < x3(y+) and y± ∈ BCin

. Note by Proposition 4.5.3 that there is a
fixed upper bound N on the number of sheets between the blow-up sheets associated
to (y±, s±) and the sheets Σ0

i (i = 1, 2) associated to (0, 1).

As a consequence of Theorem 4.5.2, there exists an R so that all the N sheets
above and the N sheets below Σ0

i are ǫ-sheets centered on the x3-axis on scale R. Call
these pairs of 1-valued sheets Σj

i with −N ≤ j ≤ N . Integrating (2.9), we obtain from
C2 and N a value, C ′

2, so that for all Σj
i , the separation over ∂DR is bounded below by

C ′
2. Non-vanishing of the right hand side of (4.6) is scaling invariant, so there exists

a C3 such that: on each Σj
i , outside of a cylinder centered on the x3-axis of radius

RC3, ui
θ 6= 0. The chord-arc bounds of [24] (i.e. Theorem 3.2.2) then allow us to pick

R1 large enough so the component of BR1
∩ Σ containing 0 contains this cylinder,

the points y+, y− and meets each Σj
i . Finally, we note that all the statements in the

theorem are invariant under rescaling. Hence, we may use Theorem 4.3.5 to construct
a sequence of C1 blow-up pairs (yi, si) satisfying the necessary conditions.

The placement of the blow-up pairs and the strict spiraling gives:

Lemma 4.3.10. For all h, there exist α, ρ0 > 0 so that for all ρ > ρ0 the set
Σ ∩ {x3 = c} ∩ {x2

1 + x2
2 = ρ2} consists of exactly two points for |c − h| ≤ α.

Proof. First note, for ρ0 large, the intersection is never empty by the maximum
principle and because Σ is proper. Without loss of generality we may assume h = 0
with 0 ∈ Z0 = Σ ∩ {x3 = 0} and |A|2(0) 6= 0. Let R1 and the set of blow-up pairs be
given by Lemma 4.3.9. There then exists ρ0 so for 2ρ > ρ0, {x2

1 + x2
2 = ρ2} ∩ Z0 lies

in the set RS. If no such ρ0 existed then, since the blow-up pairs lie outside a cone,
there would exist δ > 0 and a subset of the blow-up pairs (yi, si) so 0 ∈ BδR1si

(yi).
However, Lemma 2.26 of [24] (see also Lemma 6.4.4), with K1 = δR1, would then
imply |A|2(0) ≤ K2s

−2
i , or |A|2(0) = 0, a contradiction. Now, for some small α

and ρ > ρ0, Zc ∩ {x2
1 + x2

2 = ρ2} lies in RS for all |c| < α, and so {x2
1 + x2

2 = ρ2} ∩
{−α < x3 < α} ∩ Σ consists of the union of the graphs of u1 and u2 over the circle
∂Dρ, both of which are monotone increasing in height.
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As x3 is harmonic on Σ, Proposition 4.2.3 is an immediate consequence of the
previous result and Rado’s Theorem. Recall, Rado’s theorem [55] implies that any
minimal surface whose boundary is a graph over the boundary of a convex domain is
a graph over that domain. The proof of Rado’s theorem reduces to showing that a
non-constant harmonic function on a closed disk has an interior critical point if and
only if the level curve of the function through that point meets the boundary in at
least 4 points, which is exactly what we use. We now show Theorem 4.2.1:

Proof. By Lemma 4.3.9 it remains only to construct RA and to show that |∇Σx3| is
bounded below on it. Suppose that (0, 1) is a blow-up pair. By the chord-arc bounds
of [24], there exists γ large enough so that the intrinsic ball of radius γR1 contains
Σ∩BR1

. Lemma 2.26 of [24] implies that curvature is bounded in B2γR1
∩Σ uniformly

by K. The function v = −2 log |∇Σx3| ≥ 0 is well defined and smooth by Proposition
4.2.3 and standard computations give ∆Σv = |A|2. Then, since |∇Σx3| = 1 somewhere
in the component of B1(0) ∩ Σ containing 0, we can apply a Harnack inequality (see
Theorems 9.20 and 9.22 in [30]) to obtain an upper bound for v on the intrinsic ball
of radius γR1 that depends only on K. Consequently, there is a lower bound ǫ0 on
|∇Σx3| in Σ∩BR1

. Since this bound is scaling invariant, the same bound holds around
any blow-up pair. Finally, any bounded component, Ω, of RS has boundary in R̃A

and so, since v is subharmonic, |∇Σx3| ≥ ǫ0 on Ω. We take RA to be the union of all
such Ω with R̃A and so by shrinking RS obtain Theorem 4.2.1.

4.4 Conformal Structure of a Complete Embedded

Minimal Disk

4.4.1 Conformal structure

Since ∇Σx3 is non-vanishing and the level sets of x3 in Σ consist of a single curve,
the map z = x3 + ix∗

3 : Σ → C is a global holomorphic coordinate (here x∗
3 is the

harmonic conjugate of x3). Additionally, ∇Σx3 6= 0 implies that the normal of Σ
avoids (0, 0,±1). Thus, the stereographic projection of the Gauss map, denoted by
g, is a holomorphic map g : Σ → C\ {0}. By monodromy, there exists a holomorphic
map h = h1 + ih2 : Σ → C so that g = eh. We will use h to show that z is
actually a conformal diffeomorphism between Σ and C. As the same is then true for
h, embeddedness and the Weierstrass representation imply Σ is the helicoid.

4.4.2 Conformal mapping properties of the Gauss map

We note the following relation between ∇Σx3, g and h which comes from (2.3):

(4.9) |∇Σx3| = 2
|g|

1 + |g|2 ≤ 2e−|h1|.

An immediate consequence of (4.9) and the decomposition of Theorem 4.2.1 is that
there exists γ0 > 0 so on RA, |h1(z)| ≤ γ0. This imposes strong rigidity on h:
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Proposition 4.4.1. Let Ω± = {x ∈ Σ : ±h1(x) ≥ 2γ0} then h is a proper conformal
diffeomorphism from Ω± onto the closed half-spaces {z : ±Re z ≥ 2γ0}.
Proof. Let γ > γ0 be a regular value of h1. Such γ exists by Sard’s theorem and
indeed form a dense subset of (γ0,∞). We first claim that the smooth submanifold
Z = h−1

1 (γ) has a finite number of components. Note that Z is non-empty by (4.1)
and (4.9). By construction, Z is a subset of RS and, up to choosing an orientation,
Z lies in the graph of u1, which we will henceforth denote as u. Let us parametrize
one of the components of Z by φ(t), non-compact by the maximum principle, and
write φ(t) = Φu(ρ(t), θ(t)). Note, h2(φ(t)) is monotone in t by the Cauchy-Riemann
equations and because ∇Σh1(φ(t)) 6= 0.

At the point Φu(ρ, θ) we compute:

(4.10) g(ρ, θ) = − 1
√

1 + |∇u|2 − 1

(

uρ(ρ, θ) + i
uθ(ρ, θ)

ρ

)

eiθ.

Since uθ(ρ(t), θ(t)) > 0, there exists a function θ̃(t) with π < θ̃(t) < 2π such that

(4.11) |∇u|(ρ(t), θ(t))eiθ̃(t) = −uρ(ρ(t), θ(t)) − i
uθ(ρ(t), θ(t))

ρ(t)
.

Thus, h2(φ(t)) = θ(t) + θ̃(t).
We now claim that, up to replacing φ(t) by φ(−t), limt→±∞ h2(φ(t)) = ±∞. With

out loss of generality we need only rule out the possibility that limt→∞ h2(φ(t)) = R <
∞. Suppose this occurred, then by the monotonicity of h2, h2(φ(t)) < R. The formula
for h2(φ(t)) implies that, for t large, φ(t) lies in one sheet. The decay estimates (4.1)
together with (4.9) imply ρ(t) cannot became arbitrarily large and so the positive
end of φ lies in a compact set. Thus, there is a sequence of points pj = φ(tj), with tj
monotonically increasing to ∞, so pj → p∞ ∈ Σ. By the continuity of h1, p∞ ∈ Z,
and since h2(pj) is monotone increasing with supremum R, h2(p∞) = R, and so
p∞ is not in φ. However, p∞ ∈ Z implies ∇Σh(p∞) 6= 0 and so h restricted to a
small neighborhood of p∞ is a diffeomorphism onto its image, contradicting φ coming
arbitrarily close to p∞.

Thus, the formula for h2(φ(t)) and the bound on θ̃ show that θ(t) must extend from
−∞ to ∞. We now conclude that there are at most a finite number of components of
Z. Namely, since θ(t) runs from −∞ to ∞ we see that every component of Z must
meet the curve η(ρ) = Φu(ρ, 0) ∈ RS. Again, the gradient decay of (4.1) says that
the set of intersections of Z with η lies in a compact set, and so consists of a finite
number of points. Now, suppose there was more than one component of Z. Looking
at the intersection of Z with η, we order these components innermost to outermost;
parametrize the innermost curve by φ1(t) and the outermost by φ2(t). Pick τ a regular
value for h2, and parametrize the component of h−1

2 (τ) that meets φ1 by σ(t), writing
σ(t) = Φu(ρ(t), θ(t)) in RS. From the formula for h2, |θ(t) − τ | ≤ 2π. Again, σ(t)
cannot have an end in a compact set, so ρ(t) → ∞. Hence, σ must also intersect φ2

contradicting the monotonicity of h1 on σ.
Hence, when γ > γ0 is a regular value of h1, h−1

1 (γ) is a single smooth curve.
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We claim this implies that all γ > γ0 are regular values. Suppose γ′ > γ0 were a
critical value of h1. Then, as h1 is harmonic, the proof of Rado’s theorem implies for
γ > γ0, a regular value of h1 near γ′, h−1

1 (γ) would have at least two components.
Thus, h : Ω+ → {z : Re z ≥ 2γ0} is a conformal diffeomorphism that maps boundaries
onto boundaries, immediately implying that h is also proper on Ω+, and similarly for
Ω−.

By looking at z, which already has well understood behavior away from ∞, we
see that Σ is conformal to C with z providing an identification.

Proposition 4.4.2. The map h ◦ z−1 : C → C is linear.

Proof. We first show that z is a conformal diffeomorphism between Σ and C – i.e.
z is onto. This will follow if we show x∗

3 goes from −∞ to ∞ on the level sets of
x3. The key fact is: each level set of x3 has one end in Ω+ and the other in Ω−.
This is an immediate consequence of the radial gradient decay on level sets of x3

forced by the one-sided curvature estimate. Thus, x3 runs from −∞ to ∞ along the
curve ∂Ω+ and so z(∂Ω+) splits C into two components with only one, V , meeting
z(Ω+) = U . After conformally straightening the boundary of V (using the Riemann
mapping theorem) and precomposing with h|−1

Ω+
we obtain a map from a closed half-

space into a closed half-space with the boundary mapped into the boundary. We
claim that this map is necessarily onto, that is U equals V̄ . Suppose it was not
onto, then a Schwarz reflection would give a holomorphic map from C into a simply
connected proper subset of C. Because the latter is conformally a disk, Liouville’s
theorem would imply this map was constant, a contradiction. As a consequence, if
p → ∞ in Ω+ then z(p) → ∞, with the same true in Ω−. Thus, along each level set
of x3, |x∗

3(p)| → ∞ and so z is onto. Then, by the level set analysis in the proof of
4.4.1 and Picard’s theorem, h ◦ z−1 is a polynomial and is indeed linear.

4.4.3 Uniqueness

After a translation in R3 and a re-basing of x∗
3, h(z) = αz for some α ∈ C. As dz is

the height differential, the Weierstrass representation (2.3) gives:

x1(it) = |α|−2 (α2 sinh(α2t) sin(α1t) − α1 cosh(α2t) cos(α1t))

and
x2(it) = |α|−2 (α2 sinh(α2t) cos(α1t) + α1 cosh(α2t) sin(α1t)) ,

where α = α1 + iα2. By inspection, this curve is only embedded when α1 = 0, i.e. if
α = iα2. The factor α2 corresponds to a homothetic rescaling and so Σ is the helicoid.

4.5 Addendum

In the interest of clarity, we specialize some of Colding and Minicozzi’s work to com-
plete disks. As these results are mostly technical points we collect them here in order
not to interrupt the flow of the argument.
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4.5.1 Blow-up sheets

To show that near a blow-up pair there is a single N -valued ǫ-sheet, one needs two
results of Colding and Minicozzi. First, from [20], is the existence, near a blow-up
point, of N -valued graphs that extend almost to the boundary. Then, by [19], since
a large number of sheets gives (2.9), after a suitable rotation one has an ǫ-sheet.

Theorem 4.5.1. Given ǫ > 0, N ∈ Z+, there exist C1, C2 > 0 so: Suppose that (0, s)
is a C1 blow-up pair of Σ. Then there exists (after a rotation of R3) an N-valued
ǫ-sheet Σ0 = Γu0

on the scale s. Moreover, the separation over ∂Ds of Σ0 is bounded
below by C2s.

Proof. Proposition II.2.12 of [19] and standard elliptic estimates give an Nǫ ∈ Z+ and
δǫ > 0 so that if u satisfies (2.4) on S−πNǫ,πNǫ

e−Nǫ ,∞ and Γu ⊂ Cδǫ, then on S0,2π
1,∞ we have

all the terms of (2.9) bounded (by ǫ/2) except |∇u|. Setting τ = min
{

ǫ
4
, δǫ

2

}

and
N0 = N + Nǫ + 2, apply Corollary 4.14 from [20] to obtain C. That is, if (0, t) is a C
blow-up pair, then the corollary gives an N0-valued graph u defined on S−πN0,πN0

t,∞ with
Γu ⊂ Cτ ∩ Σ and |∇u| ≤ τ . Hence by above (and a rescaling) we see that u satisfies
(2.9) on S−πN,πN

eNǫ t,∞ . At this point we do not a priori know that limρ→∞∇u(ρ, 0) = 0.
However, there is an asymptotic tangent plane. Thus after a small rotation to make
this parallel to the x1-x2 plane (and a small adjustment to τ and t), we may assume
the limit is zero.

Proposition 4.15 of [20] gives a β > 0 so that w(t, θ) ≥ βt. Integrating (2.9), we
obtain from this a C2 so that w(eNǫt, θ) ≥ C2e

Nǫt. Finally, if we set C1 = CeNǫ then
(0, s) being a C1 blow-up pair implies that (0, e−Nǫs) is a C blow-up pair. This gives
the result.

Once we have a single sheet, we can immediately apply the one-sided curvature
estimate to obtain a graphical region inside of a cone which, moreover, satisfies (2.9)
in a smaller cone. Results along these lines can by found in [15] and [21]. We will
need:

Theorem 4.5.2. Suppose Σ contains a 4-valued ǫ-sheet Σ0 on the scale 1 with ǫ
sufficiently small. Then there exist R ≥ 1, δ > 0 depending only on ǫ such that the
component of Σ ∩ (Cδ\BR) that contains the 3-valued middle sheet on scale R of Σ0

can be expressed as the multivalued graph of a function, u, which satisfies (2.9).

4.5.2 Geometry near a blow-up pair

The existence of a blow-up pair imposes strong control on nearby geometry. The
chord-arc bound and Lemma 2.26 of [24] are examples. We also have:

Proposition 4.5.3. Given K, there is an N so that: If (y1, s1) and (y2, s2) are
C blow-up pairs of Σ with y2 ∈ BKs1

(y1), then the number of sheets between the
associated blow-up sheets is at most N .
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Proof. We note that for a large, universal constant C ′ the area of BC′Ks1
(y1)∩Σ gives

a bound on N , so it is enough to uniformly bound this area. The chord-arc bounds
of [24] give a uniform constant γ depending only on C ′ so that BC′Ks1

(y1) ∩ Σ is
contained in BγKs1

(y1) the intrinsic ball in Σ of radius γKs1. Furthermore, Lemma
2.26 of [24] gives a uniform bound on the curvature of Σ in BγKs1

(y1) and hence a
uniform bound on the area of BγKs1

(y1) by the Poincaré inequality of [20]. Since
BC′Ks1

(y1) ∩ Σ ⊂ BγKs1
(y1) it also has uniformly bounded area.
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Chapter 5

Structure Near a Blow-up Pair

As has been discussed in Chapter 3, Colding and Minicozzi give a complete, but
essentially qualitative, description of the structure of an embedded minimal disk in
R3. Recall they, roughly speaking, show that any such surface is either modeled on
a plane (i.e. is nearly graphical) or is modeled on a helicoid (i.e. is two multi-valued
graphs glued together along an axis). In the latter case, the distortion may be quite
large. For instance, in [51], Meeks and Weber “bend” the helicoid; that is, they
construct minimal surfaces where the axis is an arbitrary C1,1 curve (see Figure 5-1).
A more serious example of distortion is given by Colding and Minicozzi in [17]. There
they construct a sequence of minimal disks modeled on the helicoid, where the ratio
between the scales (a measure of the tightness of the spiraling of the multi-graphs)
at nearby points of the axis becomes arbitrarily large (see Figure 5-2).

Nevertheless, when viewed on the appropriate scale ,there is very little distortion.
Indeed, by combining Colding and Minicozzi’s compactness result for sequences of
disks and the uniqueness of the helicoid of Chapter 4, we give a more quantitative
and sharper description of embedded minimal disks near the points of large curvature.
That is, we look near a blow-up pair (y, s) in an embedded minimal disk and show
that on the scale s the disk is Lipschitz close to a helicoid (i.e. there is very little
distortion on this scale). Moreover, using the surfaces of [17] we show that the scale
that we find for which the surface is near a helicoid must be nearly optimal.

We note that the material appearing in this chapter is drawn from [3] and [2].

5.1 Lipschitz Approximation

We wish to show that, on the correct scale, the qualitative description of an embedded
minimal disk of large curvature given by Colding and Minicozzi can be made quanti-
tative. That is, near a point of large curvature, the surface looks, in a Lipschitz sense,
like a piece of the helicoid. Note that Lipschitz could be replaced by Ck (with some
constants being suitably adjusted), but the geometric structure is already captured
on the Lipschitz level and the description is simplest in this form.
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Figure 5-1: A cross section of one of Meeks and Weber’s examples, with the axis as
a circle. We indicate a subset which is a disk. Here R is the outer scale of said disk
and s the blow-up scale.

Figure 5-2: A cross section of one of Colding and Minicozzi’s examples. We indicate
the two important scales: R = 1 the outer scale and s the blow-up scale. (Here (0, s)
is a blow-up pair.)
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Theorem 5.1.1. Given ǫ, R > 0 there exists R′ ≥ R so: Suppose 0 ∈ Σ′ is an
embedded minimal disk with Σ′ ⊂ BR′s(0), ∂Σ′ ⊂ ∂BR′s(0), and (0, s) a blow-up pair
(see 3.1.1). Then there exists Ω, a subset of a helicoid, so that Σ, the component
of Σ′ ∩ BRs containing 0, is bi-Lipschitz with Ω, and the Lipschitz constant is in
(1 − ǫ, 1 + ǫ).

Before proving the theorem, we need the following simple lemma. First, consider
two surfaces Σ1, Σ2 ⊂ R3, so that Σ2 is the graph of ν over Σ1. Then the map
φ : Σ1 → Σ2 defined as φ(x) = x + ν(x)n(x) is smooth. Moreover, if ν is small, in a
C1 sense, then φ is an “almost isometry”.

Lemma 5.1.2. Let Σ2 be the graph of ν over Σ1, with Σ1 ⊂ BR, ∂Σ1 ⊂ ∂BR and
|AΣ1

| ≤ 1. Then, for ǫ sufficiently small, |ν| + |∇Σ1
ν| ≤ ǫ implies φ is a diffeomor-

phism with 1 − ǫ ≤ ||dφ|| ≤ 1 + ǫ.

Proof. For ǫ sufficiently small (depending on Σ1), φ is injective by the tubular neigh-
borhood theorem. Viewing the tangent spaces of the Σi as subspaces of R3, for
orthonormal vectors e1, e2 ∈ TpΣ1 we compute:

(5.1) dφp(ei) = ei + 〈∇Σ1
ν(p), ei〉n(p) + ν(p)Dnp(ei).

The last two terms are together controlled by ǫ. Hence, 1− ǫ < |Dφp(ei)| < 1+ ǫ.

Proof. (of Theorem 5.1.1) By rescaling we may assume that s = 1. We proceed
by contradiction. Suppose no such R′ existed for fixed ǫ, R. That is, there exists a
sequence of counter-examples; embedded minimal disk Σ′

i with Σ′
i ⊂ BRi

, ∂Σ′
i ⊂ ∂BRi

,
(0, 1) a C blow-up pair of each Σ′

i and R ≤ Ri → ∞, but Σi, the component of BR∩Σ′
i

containing zero, is not close to a helicoid.

By definition, |AΣ′

i
(0)|2 = C > 0 for all Σ′

i and so the lamination theory of Colding
and Minicozzi (i.e. Theorem 3.2.1) implies that a sub-sequence of the Σ′

i converge
smoothly, and with multiplicity one, to Σ∞, a complete embedded minimal disk.
Namely, in any ball centered at 0 the curvature of Σi is uniformly bounded by Lemma
2.26 of [24]. Furthermore, the chord-arc bounds of [24] give uniform area bounds and
so by standard compactness arguments one has smooth convergence (possibly with
multiplicity) to Σ∞. If the multiplicity of the convergence is greater than 1, then one
can construct a positive solution to the Jacobi equation (see Appendix B of [12]).
That implies Σ∞ is stable, and thus a plane by Schoen’s extension of the Bernstein
theorem [56]. This would contradict the non-vanishing curvature at 0. As Corollary
0.7 of [24] gives properness of Σ∞, Theorem 4.0.6 implies Σ∞ is a helicoid. We may,
by rescaling, assume Σ∞ has curvature 1 along the axis.

For any fixed R′ a sub-sequence of Σ′
i ∩BR′ converges to Σ∞ ∩BR′ in the smooth

topology. And so, for any ǫ, with i sufficiently large, we find a smooth νi defined on
a subset of Σ∞ so that |νi| + |∇Σ∞

νi| < ǫ and the graph of νi is Σ′
i ∩ BR′ . Choosing

R′ large enough to ensure minimizing geodesics between points in Σi lie in Σ′
i ∩ BR′

(using the chord-arc bounds of [24]), Lemma 5.1.2 gives the desired contradiction.
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5.2 Scale of the Approximation

We now wish to study the sharpness the Lipschitz approximation given by Theorem
5.1.1. In particular, we are interested in whether such a result can hold on a scale
larger than the blow-up scale. To try and make this more precise, let 0 ∈ Σ be an
embedded minimal disk with ∂Σ ⊂ ∂BR = ∂BR(0) and (0, s) is a blow-up pair. There
are then two important scales; R the outer scale and s the blow-up scale. Colding
and Minicozzi’s description of Σ holds on the outer scale R, i.e. they give a value
0 < Ω < 1 so that the component of Σ∩BΩR containing 0 consists of two multi-valued
graphs glued together. On the other hand, Theorem 5.1.1 shows that on the scale
of s (provided R/s is large), Σ is bi-Lipschitz to a piece of a helicoid with Lipschitz
constant near 1. Using the surfaces constructed in [17] we show that such a result
cannot hold on the outer scale and indeed fails to hold on certain smaller scales:

Theorem 5.2.1. Given 1 > Ω, ǫ > 0 and 1/2 > γ ≥ 0 there exists an embedded
minimal disk 0 ∈ Σ with ∂Σ ⊂ ∂BR and (0, s) a blow-up pair so: the component of
BΩR1−γsγ ∩ Σ containing 0 is not bi-Lipschitz to a piece of a helicoid with Lipschitz
constant in ((1 + ǫ)−1, 1 + ǫ).

Remark 5.2.2. At the time of writing, the surfaces of [17] were the most “distorted”
helicoids known. However, recently much worse surfaces have been constructed in [49]
(based on the constructions of [17] and [28]). It is possible that, using the surfaces
of [49], the blow-up scale can be shown to be the optimal scale.

Recall that as an application of their work on the structure of disks, Colding
and Minicozzi proved a compactness result for sequences of embedded minimal disks
0 ∈ Σi ⊂ R3 as long as ∂Σi ⊂ ∂BRi

and Ri → ∞, i.e. Theorem 3.2.1. In particular,
they show there are only two options. Either such a sequence contains a sub-sequence
converging smoothly on compact sets to a complete embedded minimal disk or, if the
curvature is unbounded on some compact subset of R

3, the convergence is (in a certain
sense, see [22] for details) to a singular minimal lamination of parallel planes. The
surfaces constructed by Colding and Minicozzi in [17] show that the condition that the
boundaries of the surface go to infinity is essential, i.e this compactness result is global
in nature. In a similar vein, the result depends very strongly on the ambient geometry
of the three-manifold. In particular, in the proof of their compactness result, Colding
and Minicozzi rely heavily on a flux argument (the details of which are in [15]). That
is, they use that the coordinate functions of R3 restrict to harmonic functions on
minimal Σ ⊂ R

3, a fact that generalizes only to certain other highly symmetric three-
manifolds. An example showing the necessity of this type of condition can be found
in [9].

One of the most important problems in this area is determining when a Colding
and Minicozzi type of compactness result (or indeed any compactness result) extends
to surfaces embedded in more general three-manifolds. Understanding precisely the
best scale for which the Lipschitz approximation holds (for which Theorem 5.2.1
gives an upper bound) may be an important tool to establish removable singularities
theorems for minimal laminations in arbitrary Riemannian manifolds. In turn, such
results could prove key to proving more general compactness theorems.
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To produce our example, we first recall the surfaces constructed in [17]:

Theorem 5.2.3. (Theorem 1 of [17]) There is a sequence of compact embedded min-
imal disks 0 ∈ Σi ⊂ B1 ⊂ R

3 with ∂Σi ⊂ ∂B1 containing the vertical segment
{(0, 0, t) : |t| ≤ 1} ⊂ Σi such that the following conditions are satisfied:

1. limi→∞ |AΣi
|2(0) → ∞

2. supΣi
|AΣi

|2 ≤ 4|AΣi
|2(0) = 8a−4

i for a sequence ai → 0

3. supi supΣi\Bδ
|AΣi

|2 < Kδ−4 for all 1 > δ > 0 and K a universal constant.

4. Σi\ {x3 − axis} = Σ1,i ∪ Σ2,i for multi-valued graphs Σ1,i and Σ2,i.

Remark 5.2.4. (2) and (3) are slightly sharper than what is stated in Theorem 1
of [17], but follow easily. (2) follows from the Weierstrass data (see Equation (2.3)
of [17]). This also gives (3) near the axis, whereas away from the axis use (4) and
Heinz’s curvature estimates.

Next introduce some notation. For a surface Σ (with a smooth metric) we de-
fine the (intrinsic) density ratio at a point p as: θs(p, Σ) = (πs2)−1Area(BΣ

s (p)).
When Σ is immersed in R3 and has the induced metric, θs(p, Σ) ≤ Θs(p, Σ) =
(πs2)−1Area(Bs(p) ∩ Σ), the usual (extrinsic) density ratio. Importantly, the intrin-
sic density ratio is well-behaved under bi-Lipschitz maps. Indeed, if f : Σ → Σ′ is
injective and with α−1 < Lipf < α (where Lipf is the Lipschitz constant of f), then:

(5.2) α−4θα−1s(p, Σ) ≤ θs(f(p), Σ′) ≤ α4θαs(p, Σ).

This follows from the inclusion, BΣ
α−1s(f

−1(p)) ⊂ f−1(BΣ′

s (p)) and the behavior of area
under Lipschitz maps, Area(f−1(BΣ′

s (p)) ≤ (Lip f−1)2Area(BΣ′

s (p)).
Note that by standard area estimates for minimal graphs, if Σ∩Bs(p) is a minimal

graph then θs(p, Σ) ≤ 2. In contrast, for a point near the axis of a helicoid, for large
s the density ratio is large. Thus, in a helicoid the density ratio for a fixed, large s
measures, in a rough sense, the distance to the axis. More generally, this holds near
blow-up pairs of embedded minimal disks:

Lemma 5.2.5. Given D > 0 there exists R > 1 so: If 0 ∈ Σ ⊂ B2Rs is an embedded
minimal disk with ∂Σ ⊂ ∂B2Rs and (0, s) a blow-up pair then θRs(0, Σ) ≥ D.

Proof. We proceed by contradiction, that is suppose there were a D > 0 and embed-
ded minimal disks 0 ∈ Σi with ∂Σi ⊂ ∂B2Ris with Ri → ∞ and (0, s) a blow-up pair
so that θRis(0, Σi) ≤ D. The chord-arc bounds of [24] imply there is a 1 > γ > 0 so
BΣi

Ris
(0) ⊃ Σi ∩ BγRis. Hence, the intrinsic density ratio bounds the extrinsic density

ratio, i.e. D ≥ θRis(p, Σi) ≥ γ2ΘγRis(p, Σi). Then, by a result of Schoen and Si-
mon [58] there is a constant K = K(Dγ−2), so |AΣi

|2(0) ≤ K(γRis)
−2. For Ri large

this contradicts that (0, s) is a blow-up pair for all Σi.

In order to show the existence of the surface Σ of Theorem 5.2.1, we exploit the
fact that two points on a helicoid that are equally far from the axis must have the same
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Figure 5-3: The points pi and ui. Note that the density ratio of ui is much larger
than the density ratio of pi.

density ratio (which can be most easily seen by noting that the helicoid is invariant
under screw-motions and rotations by 180◦ degrees around the axis). Assuming the
existence of a Lipschitz map between Σ and a helicoid, we get a contradiction by
comparing the densities for two appropriately chosen points that map to points equally
far from the axis of the helicoid.

Proof. (of Theorem 5.2.1) Fix 1 > Ω, ǫ > 0 and 1/2 > γ ≥ 0 and set α = 1 + ǫ.
Let Σi be the surfaces of Theorem 5.2.3; we claim for i large, Σi will be the desired
example. Suppose this was not the case. Setting si = Ca2

i /
√

2, where ai is as
in (2) and C is the blow-up constant,one has (0, si) is a blow-up pair in Σi, since
supΣi∩Bsi

|AΣi
|2 ≤ 8a−4

i = 4C2s−2
i = 4|AΣi

|2(0), moreover, si → 0. Hence, with

Ri = Ωsγ
i < 1, the component of BRi

∩ Σi containing 0, Σ′
i, is bi-Lipschitz to a piece

of a helicoid with Lipschitz constant in (α−1, α). That is, there are subsets Γi of
helicoids and diffeomorphisms fi : Σ′

i → Γi with Lip fi ∈ (α−1, α).
We now begin the density comparison. First, Lemma 5.2.5 implies there is a

constant r > 0 so for i large θrsi
(0, Σ′

i) ≥ 4α8 and thus by (5.2) θαrsi
(fi(0), Γi) ≥ 4α4.

We proceed to find a point with small density on Σi that maps to a point on Γi

equally far from the axis as fi(0) (which has large density).

Let Ui be the (interior) of the component of B1/2Ri
∩ Σi containing 0. Note for

i large enough, as si/Ri → 0, the distance between ∂Ui and ∂Σi
′ is greater than

4α2rsi. Similarly, for p ∈ ∂Ui for i large, p′ ∈ BΣ′

i

4α2rsi
(p) implies |p′| ≥ 1

4
Ri. Hence,

property (3) gives that |AΣ′

i
|2(p′) ≤ K ′s−4γ

i . Thus, for i sufficiently large Bα2rsi
(p)

is a graph and so θα2rsi
(p, Σ′

i) ≤ 2. Pick ui ∈ ∂f(Ui) at the same distance to the
axis as fi(0) and so the density ratio is the same at both points (see Figure 5-3).
As fi(Ui) is an open subset of Γi containing fi(0), pi = f−1

i (ui) ∈ ∂Ui. Notice that
θαrsi

(ui, Γi) = θαrsi
(fi(0), Γi) ≥ 4α4 so 2α4 ≥ α4θα2rsi

(pi, Σ
′
i) ≥ 4α4.
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Chapter 6

Genus-g Helicoids

We now apply the techniques of Chapter 4 to study non-simply connected, complete,
embedded minimal surfaces with finite topology and one end. Recall, the space
E(1, +) of such surfaces is non-trivial; the embedded genus one helicoid, H (see figure
2-3), constructed in [61] by Hoffman, Weber, and Wolf is an element of E(1, +) that,
moreover, has the property of being asymptotically helicoidal (see also [60] for a good
exposition).

In [39], Hoffman and White proved rigidity results for immersed minimal genus
one surfaces with one end that, in addition, contain, and are symmetric with respect
to, the x1 and x3-axes. In particular, they show the surface is conformally a punctured
torus with end asymptotic to a helicoid. In this chapter, we show that any Σ ∈ E(1, +)
is conformally a once punctured, compact Riemann surface, with Weierstrass data
that has helicoid-like behavior at the puncture. Precisely,

Theorem 6.0.6. Σ ∈ E(1, +) is conformally a punctured, compact Riemann surface.
Moreover, the height differential, dh, extends meromorphically over the puncture with
a double pole, as does the meromorphic one form dg

g
.

In [45], Meeks and Rosenberg discuss how one might be able to show something
similar to Theorem 6.0.6 for surfaces in E(1) and the implications this has to the
possible conformal structure of complete embedded minimal surfaces in R

3. They do
this without going into the details or addressing the difficulties, but indicate how such
a statement might be proved using the ideas and techniques of their paper. That is,
they anticipated a proof using their derivation of the uniqueness of the helicoid from
the lamination result of Colding and Minicozzi [22].

Theorem 6.0.6 completes the understanding of the conformal type of complete,
embedded minimal surfaces of finite topology. In [48], Meeks and Rosenberg prove
conformality results for properly embedded minimal surfaces of finite topology which
have two or more ends. Using their work, Corollary 0.13 of [24], and Theorem 6.0.6,
we have the following:

Corollary 6.0.7. Every complete, embedded minimal surface of finite topology in R3

is conformal to a compact Riemann surface with a finite number of punctures.

As Σ is embedded, Theorem 6.0.6 has the following corollary:
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Corollary 6.0.8. For Σ ∈ E(1, +), there exists an α ∈ R so dg
g
− iαdh has holo-

morphic extension to the puncture, with a zero at the puncture. Equivalently, after
possibly translating parallel to the x3-axis, in an appropriately chosen neighborhood of
the puncture, Γ, g(p) = exp(iαz(p)+F (p)) where F : Γ → C extends holomorphically
over the puncture with a zero there and z = x3 + ix∗

3 is a holomorphic coordinate on
Γ. (Here x∗

3 is the harmonic conjugate of x3 and is well defined in Γ.)

Indeed, this allows us to apply a result of Hauswirth, Perez and Romon [31]:

Corollary 6.0.9. If Σ ∈ E(1) is non-flat, then Σ is C0-asymptotic to some helicoid.

The work in this chapter is drawn from [4].

6.1 Outline of the Proof

Let Σ ∈ E(1, +), because Σ is properly embedded and has finite genus and one end the
topology of Σ is concentrated in a ball in R3. Thus, the maximum principle implies
that all components of the intersection of Σ with a ball disjoint from the genus are
disks. Hence, outside of a large ball, one may use the local results of [19–22] about
embedded minimal disks. In Chapter 4, the trivial topology of Σ allows one to deduce
global geometric structure immediately from these local results. For Σ ∈ E(1, +), the
presence of non-zero genus complicates matters. Nevertheless, the global structure
will follow from the far reaching description of embedded minimal surfaces given by
Colding and Minicozzi in [12]. In particular, as Σ has one end, globally it looks like
a helicoid (see Section 3.2.3 and Section 6.4.2). Following the argument presented
in Chapter 4, we first prove a sharper description of the global structure (in Section
6.2.4); indeed, one may generalize the decomposition of Theorem 4.2.1 to Σ ∈ E(1, +)
as:

Theorem 6.1.1. There exist ǫ0 > 0 and RA, RS , and RG, disjoint subsets of Σ,
such that Σ = RA ∪ RS ∪ RG. The set RG is compact, connected, has connected
boundary and Σ\RG has genus 0. RS can be written as the union of two (oppositely
oriented) multi-valued graphs u1 and u2 with ui

θ 6= 0. Finally, (after a rotation of R3)
|∇Σx3| ≥ ǫ0 in RA. (See Figure 6-1)

Remark 6.1.2. Here ui multi-valued means that it can be decomposed into N -valued
ǫ-sheets (see Definition 4.3.1) with varying center. The angular derivative, (ui)θ, is
then with respect to the obvious polar form on each of these sheets. For simplicity
we will assume throughout that both ui are ∞-valued.

As an important step in establishing the decomposition theorem, notice that the
minimal annulus Γ = Σ\RG has exactly the same weak asymptotic properties as an
embedded non-flat minimal disk. Thus, as in Chapter 4, strict spiraling in RS and a
lower bound for |∇Σx3| on RA together give (for appropriately chosen RG):

Proposition 6.1.3. In Γ, ∇Σx3 6= 0 and, for all c ∈ R, Γ ∩ {x3 = c} consists of
either one smooth, properly embedded curve or two smooth, properly embedded curves
each with one endpoint on ∂Γ.
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Figure 6-1: A rough sketch of the decomposition of Σ given by Theorem 6.1.1.

The decomposition allows us to argue as in Chapter 4, though the non-trivial
topology again adds some technical difficulties. By Stokes’ Theorem, x∗

3 (the harmonic
conjugate of x3) exists on Γ and thus there is a well defined holomorphic map z : Γ →
C given by z = x3 + ix∗

3. Proposition 6.1.3 implies that z is a holomorphic coordinate
on Γ. We claim that z is actually a proper map and so Γ is conformally a punctured
disk. Following Chapter 4, this can be shown by studying the Gauss map. On Γ, the
stereographic projection of the Gauss map, g, is a holomorphic map that avoids the
origin. Moreover, the minimality of Σ and the strict spiraling in RS imply that the
winding number of g around the inner boundary of Γ is zero. Hence, by monodromy
there exists a holomorphic map f : Γ → C with g = ef . Then, as in Chapter 4, the
strict spiraling in RS imposes strong control on f which is sufficient to show that z is
proper. Further, once we establish Γ is conformally a punctured disk, the properties
of the level sets of f imply that it extends meromorphically over the puncture with a
simple pole. This gives Theorem 6.0.6 and ultimately Corollaries 6.0.8 and 6.0.9.

6.2 Geometric Decomposition

In the next four subsections, we develop the tools needed to prove the structural
results of Theorem 6.1.1 and Proposition 6.1.3. Many of these are extensions of those
developed for the simply connected case, which can be found in Section 4.3 of Chapter
4. We prove Theorem 6.1.1 and Proposition 6.1.3 at the conclusion of Section 6.2.4.

6.2.1 Structural results

To obtain the decomposition of Theorem 6.1.1 we will need two important structural
results which generalize results for disks from [19] and [20] (it should be noted that
many of the proofs of these results did not require that the surface be a disk but
only that the boundary be connected, a fact used in [12]). The first is the existence
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of an N -valued graph starting near the genus and extending as a graph all the way
out. The second result is similar but for a blow-up pair far from the genus. Namely,
for such a pair a multi-valued graph forms on the scale of the pair and extends as
a graph all the way out. It may be helpful to compare with the comparable results
for disks, i.e. Theorem 0.3 of [19] (see Theorem 3.3) and Theorem 0.4 of [20] (see
Theorem 3.1.3).

Note that variants of the propositions are used in [12], specifically in the proof of
the compactness result, i.e. Theorem 0.9 for finite genus surfaces, though they are not
made explicit there. For the sake of completeness we provide proofs (in Section 6.4.2)
of these propositions using Theorem 0.9 of [12]. Note that while both propositions
require a rotation of R

3, they are the same rotation. This is because both propositions
actually come from the global geometric structure of Σ.

Proposition 6.2.1. Given ǫ > 0 and N ∈ Z+ there exists an R > 0 so that: After
a rotation of R3 there exists an N-valued graph Σg ⊂ Σ over the annulus D∞\DR ⊂
{x3 = 0}, with gradient bounded by ǫ and in Cǫ.

Proposition 6.2.2. Given ǫ > 0 sufficiently small and N ∈ Z
+ there exist C1, C2 > 0

and R > 0 so: After a rotation of R3, if (y, s) is a C1 blow-up pair in Σ and |y| ≥ R
then there exists an N-valued graph Σg over the annulus D∞\Ds(Π(y)) ⊂ {x3 = 0}
with gradient bounded by ǫ and in the cone Cǫ(y), and with initial separation bounded
below by C2s. Finally, distΣ(Σg, y) ≤ 2s.

6.2.2 Blow-up sheets

In order to get the strict spiraling in the decomposition of Theorem 6.1.1 we need
to check that the multi-valued graphs that make up most of Σ can be consistently
normalized. To that end, we recall that for blow-up pairs far enough from the genus
one obtains a nearby ǫ-sheet (i.e. we have a normalized multi-valued graph). Indeed,
the proof of Theorem 4.5.1 of Chapter 4 applies without change to blow-up pairs
satisfying the conditions of Proposition 6.2.2. We claim that in between this sheet, Σ
consists of exactly one other ǫ-sheet. For the definition and basic properties of these
ǫ-sheets see Section 4.3.1.

Theorem 6.2.3. Given ǫ > 0 sufficiently small there exist C1, C2 > 0 and R > 1
so: Suppose (y, s) is a C1 blow-up pair, with |y| > R. Then there exist two 4-valued
ǫ-sheets Σi = Γui

(i = 1, 2) on the scale s centered at y which spiral together (i.e.
u1(s, 0) < u2(s, 0) < u1(s, 2π)). Moreover, the separation over ∂Ds(Π(y)) of Σi is
bounded below by C2s.

Remark 6.2.4. We refer to Σ1, Σ2 as (ǫ-)blow-up sheets associated with (y, s).

Proof. We fix a δ > 0 and note that Lemma 6.4.2 gives a R > 1 so that if |y| > R then
y /∈ Cδ and using this δ and ǫ we pick δ0 < ǫ as in Corollary 6.4.3 (and increase R if
needed). Then, Theorem 4.5.1 and Proposition 6.2.2 together give one δ0-sheet, Σ1,
forming near (y, s) for appropriately chosen C1 (and possibly after again increasing
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R). Now as long as the part of Σ between the sheets of Σ1 make up a second minimal
graph, the proof of Theorem 6.2.3 applies (and provides the correct C2).

Recall (4.3), which gives the region, E, in R3 between the sheets of Σ1. Theorem
I.0.10 of [22] implies that near the blow-up pair the part of Σ between Σ1 is a graph
Σin

2 ; i.e. if R0 is chosen so B4R0
(y) is disjoint from the genus then BR0

(y)∩E∩Σ\Σ1 =
Σin

2 . To ensure Σ2
in is non-empty, we increase R so that |y| ≥ 8s (which we may do

by Corollary 6.4.5). On the other hand, Appendix D of that same paper guarantees
that, outside of a very large ball centered at the genus, the part of Σ between Σ1 is a
graph, Σout

2 . That is, for R1 ≥ |y| large, E ∩Σ\(BR1
∪Σ1) = Σout

2 . Now by one-sided
curvature estimates (which Corollary 6.4.3 allows us to use), all the components of
E\Σ1 are graphs and so it suffices to show that Σin

2 and Σout
2 are subsets of the same

component. Suppose not. Then, as Σin
2 is a graph and Σ is complete, Σin

2 must
extend inside E beyond BR1

. But this contradicts Appendix D of [22] by giving two
components of Σ\Σ1 in E ∩ Σ\BR1

.

6.2.3 Blow-Up pairs

While the properties of ǫ-sheets give the strictly spiraling region of Σ, to understand
the region where these sheets fit together (i.e. the axis), we need a handle on the
distribution of the blow-up pairs of Σ. In the case of trivial topology, non-flatness
gives one blow-up pair (y0, s0), which in turn yields associated blow-up sheets. Then
by Corollary 3.1.7 (i.e. III.3.5 of [21]), the blow-up sheets give the existence of nearby
blow-up pairs (y±1, s±1) above and below (see Theorem 4.3.5 or Lemma 2.5 of [24]).
Iterating, one constructs a sequence of blow-up pairs that give the axis RA.

Crucially, for the extension of the argument to surfaces in E(1, +), the result of [21]
is local; it depends only on the topology being trivial in a large ball relative to the
scale s0. Thus, the above construction holds in Σ as long as one deals with two issues.
First, establish the existence of two initial blow-up pairs far from the genus, one above
and the other below, with small scale relative to the distance to the genus. Second,
show that the iterative process produces blow-up pairs which continue to have small
scale (again relative to the distance to the genus).

We claim that the further a blow-up pair is from the genus, the smaller the ratio
between the scale and the distance to the genus; hence both issues can be addressed
simultaneously. This is an immediate consequence (see Corollary 6.4.5) of the control
on curvature around blow-up pairs as given by Proposition 6.4.4 (an extension of
Lemma 2.26 of [24] to Σ). Thus, given an initial blow-up pair far enough above the
genus, we can iteratively produce higher and higher blow-up pairs that satisfy the
appropriate scale condition, with the same true starting below the genus and going
down. Here we establish the existence of a chain of blow-up pairs which will be critical
to our decomposition theorem:

Lemma 6.2.5. Given ǫ > 0 sufficiently small, there exist constants C1, Cin > 0 and
a sequence (ỹi, s̃i) of C1 blow-up pairs of Σ such that: the sheets associated to (ỹi, s̃i)
are ǫ-sheets on scale s̃i centered at ỹi and x3(ỹi) < x3(ỹi+1) for i ≥ 1, ỹi+1 ∈ BCins̃i

(ỹi)
while for i ≤ −1, ỹi−1 ∈ BCins̃i

(ỹi).
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Proof. Without loss of generality, we work above the genus (i.e. for x3 > 1 and
i ≥ 1), as the argument below the genus is identical. Use ǫ to choose C1, C2 and R as
in Theorem 6.2.3. By Corollary 3.1.7 there are constants Cout > Cin > 0 such that,
for a C1 blow-up pair (y, s) with |y| ≥ R, as long as the component of BCouts(y) ∩ Σ
containing y is a disk, we can find blow-up pairs above and below (y, s) and inside
BCins(y). We will also need to make use of the one-sided curvature estimate near
the sheets associated to (y, s). This can be ensured by increasing R appropriately
as indicated by Corollary 6.4.3. Corollary 6.4.5 and Proposition 6.4.1 ensure a value
h1 ≥ R, depending on Cout so for |y| ≥ h1 this condition is satisfied. Thus, it suffices
to find an initial blow-up pair (ỹ1, s̃1) with |ỹ1| ≥ h1, as repeated application of
Corollary 3.1.7 will give the sequence (ỹi, s̃i). Notice that by our choice of R we may
apply the one-sided curvature estimate and so conclude that yi+1 lies within a cone
centered at yi, in particular this implies that x3(yi+1) ≥ x3(yi) and thus |yi| ≥ R and
so the iteration is justified.

Proposition 6.2.1 and Appendix D of [22] together guarantee the existence of two
Ñ -valued graphs spiraling together over an unbounded annulus (with inner radius R).
Then, for large enough Ñ , the proof of Theorem 4.3.5 gives two N -valued ǫ-sheets
around the genus, Σ1, Σ2, on some scale R̃ and in the cone Cǫ. Theorem III.3.1
of [21] with r0 ≥ max{1, R̃, h1} then implies there is large curvature above and below
the genus. Hence, by a standard blow-up argument (i.e. Lemma 3.1.2) one gets the
desired C1 blow-up pair (ỹ1, s̃1) above the genus with |ỹ1| > 2r0 ≥ h1.

6.2.4 Decomposing Σ

The decomposition of Σ now proceeds as in Chapter 4, with Proposition 4.3.8 giving
strict spiraling far enough out in the ǫ-sheets of Σ. After specifying the region of strict
spiraling, RS, the remainder of Σ will be split into the genus, RG, and the axis, RA.
The strict spiraling, the fact that away from the genus convex sets meet Σ in disks
(see Lemma 6.4.1) and the proof of Rado’s theorem (see [55]) will then give ∇Σx3 6= 0
in RA. Then a Harnack inequality will allow us to bound |∇Σx3| from below there.

Lemma 6.2.6. There exist constants C1, R0, R1 and a sequence (yi, si) (i 6= 0) of
C1 blow-up pairs of Σ so that: x3(yi) < x3(yi+1) and for i ≥ 1, yi+1 ∈ BR1si

(yi)
while for i ≤ −1, yi−1 ∈ BR1si

(yi). Moreover, if R̃A = R̃+
A ∪ R̃−

A where R̃±
A is

⋃

±i>0 ΣR1si,yi
(and ΣR1si,yi

is the component of BR1si
(yi) ∩ Σ containing yi), then

RS = Σ\
(

R̃A ∪ BR0

)

has exactly two unbounded components which can be written

as the union of two multi-valued graphs u1 and u2, with ui
θ 6= 0.

Proof. We wish to argue as in Lemma 4.3.9 and to do so we must ensure that we may
use the chord-arc bounds of [24] and the one-sided curvature estimates of [22] near
the pairs (yi, si). As these are both essentially local results it will suffice to work far
from the genus.

Fix ǫ < ǫ0 where ǫ0 is given by Proposition 4.3.8 which will be important for the
strict spiraling. Next pick δ > 0 and apply Corollary 6.4.3 to obtain a δ0 < ǫ and
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R̃ > 1. Now using δ0 in place of ǫ let (ỹi, s̃i) be the sequence constructed in Lemma
6.2.5. Let us now determine how to choose the (yi, si).

First of all, as long as yi /∈ Cδ ∪BR̃ we may use the one-sided curvature estimate
in Cδ0(yi). Notice by Lemma 6.4.2 we may increase R̃ and require only that yi /∈ BR̃.
Now recall that the chord-arc bounds give a constant Carc > 0 so for any γ > 1, if the
component of B2Carcγsi

(yi)∩Σ containing yi is a disk, then the intrinsic ball of radius
Carcγsi centered at yi contains Bγsi

(yi)∩Σ. On (yi, si), we want a uniform bound, N ,
on the number of sheets between the blow-up sheets associated to the pairs (yi, si) and
(yi+1, si+1). This is equivalent to a uniform area bound which in turn follows from the
chord-arc bounds described above and curvature bounds of Proposition 6.4.4 (for de-
tails see Proposition 4.5.3). To correctly apply this argument, one must be sufficiently
far from the genus; i.e. for a fixed constant Cbnd, the component of BCbndsi

(yi) ∩ Σ
containing yi must be a disk. To that end, pick h2 ≥ 0 by using Corollary 6.4.5 with

α−1 ≥ max
{

Cbnd, 2R1, R̃
}

where R1 is to be chosen later. We then pick the sequence

(yi, si) from (ỹi, s̃i) by requiring x3(yi) ≥ h2 (and then relabeling). Notice that the
way we choose the (yi, si) ensures that N is independent of our ultimate choice of R1.

We now determine R1. By choice of (yi, si), the one-sided curvature bounds hold
and so there is an R2 such that in Cδ0(y1) all of the (at most) N sheets between the
blow-up sheets associated to (y1, s1) and (y2, s2) are δ0-sheets on scale R2s1 centered
on the line ℓ which goes through y1 and is parallel to the x3-axis (see Theorem
4.5.2). Label these pairs of δ0-sheets Σj

k, k = 1, 2 and 1 ≤ j ≤ N . Proceeding
now as in the second paragraph of the proof of Lemma 4.3.9, we use N , C2 and
(2.9) to get C̃2 so C̃2s1 is a lower bound on the separation of each Σj

k over the circle
∂DR2s1

(Π(y1)) ⊂ {x3 = 0}. Proposition 4.3.8 gives a C3, depending on C̃2, such that
outside of a cylinder centered at ℓ of radius R2C3s1, all the Σj

k strictly spiral. Choose
R̃1, depending only on Cin, N, δ0, C3 and R2, so BR̃1s1

(y1) contains this cylinder, the

point y2 and meets each Σj
k. Then if R1 = CarcR̃1 the preceding is also true of the

component of BR1s1
(y1)∩Σ containing y1. By the scaling invariance of strict spiraling

and the uniformity of the choices, the same is true for each (yi, si).

Finally, by properness, there exists a finite number, M , of ǫ-sheets between the
blow-up sheets associated to (y±1, s±1). Pick R0 large enough so that outside of
the ball of radius R0 the M sheets between the blow-up sheets associated to (y1, s1)
and (y−1, s−1) strictly spiral. Such an R0 exists by Proposition 6.2.1 and the above
argument.

Proof. (Proposition 6.1.3) By properness there exists an R′
0 ≥ R0 so that the compo-

nent of BR′

0
∩ Σ containing the genus, Σ, contains BR0

∩ Σ. We take RG to be this
component and note that ∂RG is connected by Proposition 6.4.1. The strict spiraling
in RS and the proof of Rado’s theorem gives Proposition 6.1.3 (See Section 4.3.4).

Proof. (Theorem 6.1.1) By using Lemma 6.2.6 the proof of Theorem 4.2.1 in Chapter
4 then gives Theorem 6.1.1. Indeed, we have already constructed RS and RG in the
proofs of Lemma 6.2.6 and Proposition 6.1.3. If we set RA = Σ\ (RS ∪RG) then we
may verify the properties of RA exactly as in the proof of Theorem 4.2.1. We may
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need to decrease ǫ0 in the statement of the theorem so min∂RG
|∇Σx3| ≥ ǫ0, but ∂RG

is compact so this introduces no new problems.

6.3 Conformal Structure of the end

In this section we prove Theorem 6.0.6 and Corollary 6.0.8 by analysis nearly identical
to that in Section 4.4. To do so, we first show that Γ = Σ\RG is conformally a
punctured disk and, indeed, the map z = x3 + ix∗

3 : Γ → C is a proper, holomorphic
coordinate (here x∗

3 is the harmonic conjugate of x3). Note that by Proposition 6.1.3,
as long as z is well defined, it is injective and a conformal diffeomorphism. Thus, it
suffices to check that z is well defined and that it is proper; i.e. if p → ∞ in Γ then
z(p) → ∞.

Proposition 6.3.1. x∗
3 is well defined on Γ.

Proof. As Σ is minimal, ∗dx3, the conjugate differential to dx3, exists on Σ and
is closed and harmonic. We wish to show it is exact on Γ. To do so, it suffices
to show that for every closed, embedded curve ν in Γ, we have

∫

ν
∗dx3 = 0. By

Proposition 6.4.1, Σ\ν has two components, only one of which is bounded. The
bounded component, together with ν, is a manifold with (connected) boundary, and
on this manifold ∗dx3 is a closed form. Hence, the result follows immediately from
Stokes’ theorem.

6.3.1 Winding number of the Gauss map

We wish to argue as in Section 4.4, and to do so we must first check that there is a
well defined notion of log g in Γ. In other words, there exists f : Γ → C such that
g = ef on Γ, where g is the stereographic projection of the Gauss map of Σ. For such
an f to exist, the winding number of g from Γ to C\ {0} must be zero. Since g is
meromorphic in Σ and has no poles or zeros in Γ, this is equivalent to showing that
g has an equal number of poles and zeros.

Proposition 6.3.2. Counting multiplicity, g has an equal number of poles and zeros.

Proof. The zeros and poles of g occur only at the critical points of x3. In particular,
by Proposition 6.1.3, there exist h and R so that all the zeros and poles are found in
the cylinder:

(6.1) Ch,R =
{

|x3| ≤ h, x2
1 + x2

2 ≤ R2
}

∩ Σ.

Moreover, for R and h sufficiently large, γ = ∂Ch,R is the union of four smooth curves,
two at the top and bottom, γt and γb, and two disjoint helix like curves γ1, γ2 ⊂ RS.
Hence, for c ∈ (−h, h), {x3 = c} meets ∂Ch,R in exactly two points. Additionally, as
γ1 and γ2 are compact, there is a constant α > 0 so | d

dt
x3(γi(t))| > α, i = 1, 2.

Let us first suppose that g has only simple zeros and poles and these occur at
distinct values of x3, thus, the Weierstrass representation implies that the critical
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Figure 6-2: Level curve examples in Proposition 6.3.2. (a) Initial orientation chosen
at height x3 = h. (b) A curve pinching off from Ω1. (c) Two curves pinching from
one. (d) A curve pinching off from Ω2.

points of x3 are non-degenerate. We now investigate the level sets {x3 = c}. By the
strict spiraling of γi (i = 1, 2), at the regular values these level sets consist of an
interval with end points in γi (i = 1, 2) and the union of a finite number of closed
curves. Moreover, by the minimality of Ch,R, the non-smooth components of the
level sets at critical values will consist of either two closed curves meeting in a single
point or the interval and a closed curve meeting in a single point. As a consequence
of this {|x3| ≤ h, x2

1 + x2
2 ≤ R2} \Ch,R has exactly two connected components Ω1 and

Ω2. Orient Ch,R by demanding that the normal point into Ω1. Notice that it is well
defined to say if a closed curve appearing in {x3 = c} ∩ Ch,R surrounds Ω1 or Ω2.

The restrictions imposed on g and minimality of Ch,R imply that at any critical
level, as one goes downward, either a single closed curve is “created” or is “destroyed”.
(See Figure 6-2.) Moreover, when such a curve is created it makes sense to say whether
it surrounds Ω1 or Ω2 and this is preserved as one goes downward. Now suppose a
closed curve is created and that it surrounds Ω1; then it is not hard to see that at the
critical point the normal must point upwards. Similarly, if a closed curve surrounding
Ω1 is destroyed then the normal at the critical point is downward pointing. For,
closed curves surrounding Ω2 the opposite is true; i.e. when a closed curve is created
then at the critical point the normal points downward. Thus, since the level sets at h
and −h are intervals, one sees that the normal points up as much as it points down.
That is, g has as many zeros as poles.

We now drop the restrictions on the poles and zeros of g. Beyond these assump-
tions the argument above used only that Ch,R was minimal and that the boundary
curves γi (i = 1, 2) meet the level curves of x3 in precisely one point. It is not hard to
check that these last two conditions are preserved by small rotations around lines in
the x1-x2 plane. We claim that such rotations also ensure that the Gauss map of the
new surface must have simple poles or zeros and these are on distinct level sets. To
that end we let Cǫ

h,R be the rotation of Ch,R by ǫ degrees around a fixed line ℓ in the
x1-x2 plane and through the origin (note we do not rotate the ambient R

3). Denote
by Φǫ the induced isometric isomorphism between the sets.

The strict spiraling of γ1, γ2 implies there exists an ǫ0 > 0, depending on α and R
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and a constant K > 0, depending on R so: for all 0 < ǫ < ǫ0, if c ∈ (−h+Kǫ, h−Kǫ)
then {x3 = c} ∩ Cǫ

h,R meets ∂Cǫ
h,R in two points. Moreover, by a suitable choice of

ℓ the critical points will be on distinct level sets. Denote by gǫ the stereographic
projection of the Gauss map of Cǫ

h,R. We now use the fact that g is meromorphic
on Σ (and thus the zeros and poles of g are isolated) and that gǫ is obtained from g
by a Möbius transform. Indeed, these two facts imply that (after shrinking ǫ0) for
ǫ ∈ (0, ǫ0), gǫ has only simple zeros and poles on Cǫ

h,R and by our choice of ℓ these are
on distinct levels of x3. By further shrinking ǫ0 one can ensure that all of the critical
values occur in the range (−h + Kǫ, h − Kǫ). Thus, the level sets in Cǫ

h,R of x3 for
c ∈ (−h + Kǫ, h − Kǫ) consist of an interval with endpoints in ∂Cǫ

h,R, one in each γi

for i = 1, 2, and the union of a finite number of closed curves.
Our original argument then immediately implies that gǫ has as many zeros as

poles. Thus,
∫

∂Ch,R
Φ∗

ǫ
dgǫ

gǫ
=
∫

∂Cǫ
h,R

dgǫ

gǫ
= 0 for ǫ < ǫ0. Hence, as Φ∗

ǫ
dgǫ

gǫ
is continuous in

ǫ,
∫

∂Ch,R

dg
g

= 0.

Corollary 6.3.3. A holomorphic function f : Γ → C exists so ef = g on Γ.

6.3.2 Conformal structure of the end

The strict spiraling in RS was used in Chapter 4 to show that the map f = f1 + if2

was, away from a neighborhood of RA, a proper conformal diffeomorphism onto the
union of two disjoint closed half-spaces. Since every level set of x3 has an end in each
of these sets, properness of z was then a consequence of Schwarz reflection and the
Liouville theorem. The same is true when there is non-zero genus:

Proposition 6.3.4. There exists a γ0 > 0 so: with Ω± = {x ∈ Γ : ±f1(x) ≥ γ0}, f
is a proper conformal diffeomorphism from Ω± onto {z : ±Re z ≥ γ0}.

Proof. Pick γ0 as in Proposition 6.3.4 (where γ0 depends only on the ǫ0 of Theorem
6.1.1), as long as f−1

1 (γ0) ∩ ∂Γ = ∅ the proof for the simply connected case carries
over unchanged. Note, the proof only depends on having a lower bound for γ0 and so
we may increase, if necessary, so that γ0 > max∂RG

|f1|.

6.3.3 The proofs of Theorem 6.0.6 and Corollary 6.0.8

Proof. (Theorem 6.0.6) Coupled with the above results, the proof of Proposition
4.4.2 then gives that z → ±∞ along each level set of x3; that is z : Γ → C is a
proper holomorphic coordinate. Thus, z(Γ) contains C with a closed disk removed;
in particular, Γ is conformally a punctured disk. Then, since f−1

1 (γ0) ∩ Γ is a single
smooth curve, f has a simple pole at the puncture. Similarly, by Proposition 6.1.3,
z has a simple pole at the puncture. In Γ, the height differential dh = dz and
dg
g

= df .

Embeddedness and the Weierstrass representation, (2.3), then imply Corollary
6.0.8:
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Proof. Theorem 6.0.6 gives that, in Γ, f(p) = αz(p) + β + F (p) where α, β ∈ C

and F : Γ → C is holomorphic and has holomorphic extension to the puncture (and
has a zero there). By translating Σ parallel to the x3-axis and re-basing x∗

3 we may
assume β = 0. By Proposition 6.1.3, {x3 = 0} ∩ Γ can be written as the union
of two smooth proper curves, σ±, each with one end in ∂Γ, and parametrized so
x∗

3(σ
±(t)) = t for ±t > T ; here T > 0 is large enough that σ±(t) ⊂ RS. Let us

denote by ρ±(t) and θ±(t) the polar coordinates of σ±(t). Notice that as we are in
Γ, Im f(σ±(t)) = (Re α)t + Im F (σ±(t)). By the strict spiraling in RS, there are
integers N± so |θ±(t) − Im f(σ±(t))| < πN± (see the proof of Proposition 6.3.4).
Thus, since F (σ±(t)) → 0 as |t| → ∞, if Re α 6= 0 then θ±(t) is unbounded as |t|
increases. That is, σ+ and σ− spiral infinitely and in opposite directions. Moreover,
the strict spiraling also gives that ρ±(t) is strictly increasing in |t|. To see this note
that since ρ′(t)uρ(ρ(t), θ(t)) + θ′(t)uθ(ρ(t), θ(t)) = 0 along σ±(t) and uθ 6= 0, ρ′(t)
can only vanish when θ′(t) does. But, our choice of parametrization rules out the
simultaneous vanishing of these two derivatives. This contradicts embeddedness, as
such curves must eventually intersect. This last fact is most easily seen by looking
at the universal cover of the annulus {max {ρ±(±T0)} ≤ ρ ≤ min {ρ±(±(T0 + T1)}}
where T0, T1 > T > 0 are chosen so |θ±(±(T0 +T1))−θ±(±T0)| ≥ 4π and the annulus
is non-empty. In particular, by appropriately lifting σ+ and σ−, the intersection is
immediate. Therefore, Re α = 0.

6.4 Addendum

6.4.1 Topological structure of Σ

An elementary, but crucial, consequence of the maximum principle is that each com-
ponent of the intersection of a minimal disk with a closed ball is a disk. Similarly,
each component of the intersection of a genus k surface with a ball has genus at most
k (see Appendix C of [22] and Section I of [21]). For Σ with one end and finite genus,
we obtain a bit more:

Proposition 6.4.1. Suppose Σ ∈ E(1) and Σ ⊂ Σ∩B1 is connected and has the same
genus as Σ. Then, Σ\Σ is an annulus. Moreover, for any convex set C with non-
empty interior, if C ∩B1 = ∅, then each component of C ∩Σ is a disk. Alternatively,
if B1 ⊂ C then all the components of C ∩ Σ not containing Σ are disks.

Proof. That Σ\Σ is an annulus is a purely topological consequence of Σ having one
end. Namely, if ∂Σ had more than one connected component, the genus of Σ would
be strictly greater than the genus of Σ.

If C and B1 are disjoint then, as they are convex, there exists a plane P so that P
meets Σ transversely and so that P separates B1 and C. Since Σ\Σ is an annulus and
P ∩ Σ = ∅, the convex hull property implies that P ∩ Σ consists only of unbounded
smooth proper curves. Thus, exactly one of the components of Σ\(P ∩ Σ) is not a
disk. As C is disjoint from the non-disk component we have the desired result. On
the other hand, if C is convex and contains B1, denote by C ′ the component of C ∩Σ
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containing Σ. Suppose there was a component of C ∩Σ not equal to C ′ that was not
a disk, then there would be a subset of Σ with boundary in C̄ but interior disjoint
from C, violating the convex hull property.

6.4.2 Proofs of Proposition 6.2.1 and 6.2.2

We note that Theorem 6.1.1 is a sharpening, for Σ ∈ E(1), of a much more general
description of the shapes of minimal surfaces given by Colding and Minicozzi in
[12]. More precisely, in that paper they show, for a large class of embedded minimal
surfaces in R

3, how the geometric structure of a surface is determined by its topological
properties. In particular, as Σ has finite topology and one end, their work shows that
it roughly looks like a helicoid. That is, away from a compact set containing the
genus, Σ is made up of two infinite-valued graphs that spiral together and are glued
along an axis. While we do not make direct use of this description, it is needed in
order to derive the structural results of Section 6.2.1 from the compactness theory
of [12]. Thus, we briefly sketch a proof, we also refer the reader to Section 3.2.3.

First, Theorem 6.4.1 implies that the sequences λiΣ, λi → 0, of homothetic scal-
ings of Σ are all uniformly locally simply connected (ULSC); i.e. there is no con-
centration of topology other than the genus shrinking to a point (see (1.1) of [12]
for the rigorous definition). Theorem 0.9 of [12] (particularly its extension to finite
genus ULSC surfaces) gives a compactness result for such sequences. Namely, any
ULSC sequence of fixed, finite genus surfaces, with boundaries going to ∞ and cur-
vature blowing up in a compact set, has a sub-sequence converging to a foliation,
L, of flat parallel planes with at most two singular lines (where the curvature blows
up), S1,S2 orthogonal to the leaves of the foliation. Up to a rotation of R3 we have
L = {x3 = t}t∈R

and so Si are parallel to the x3-axis. Away from the singular lines
the convergence is in the sense of graphs, in the Cα topology on compact sets for
any 0 < α < 1. Moreover, as explained in property (Culsc) of Theorem 0.9 (see also
Proposition 1.5 of [12]), in a small ball centered at a point of the singular set the
convergence is (away from the singular set) as a double spiral staircase.

We note that in our case, i.e. λiΣ, λi → 0, there is only one singular line and indeed
since Σ ⊂ B1 has non-zero curvature this singular line is the x3-axis. To see this, we
use a further description of the convergence given by property (Culsc), namely, when
there are two singular lines, the double spirals that form around each singular line are
glued so that graphs going around both singular lines close up. To be precise, consider
bounded, non-simply connected subsets of R

3\ (S1 ∪ S2) that contain no closed curves
homotopic (in R3\ (S1 ∪ S2)) to a curve around only Si. That is, consider bounded
regions that go only around both singular lines. In these regions, the convergence is
as a single valued graph. If this were true of the convergence of λiΣ, then one could
intersect λiΣ with a ball BR with R chosen large enough to intersect both singular
lines (and contain the genus). Then at least one component of this intersection for i
very large would have 3 boundary components which contradicts Proposition 6.4.1.
Thus, the local picture near S1 of a double spiral staircase extends outward and Σ
has the claimed structure.

The geometric nature of the proof of Theorem 0.9 of [12] implies that λiΣ always
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converges to the same lamination independent of the choice of λi. We now use the
nature of this convergence to deduce gradient bounds in a cone. This and further
application of the compactness theory will then give Propositions 6.2.1 and 6.2.2.

Lemma 6.4.2. For any ǫ > 0, δ > 0 there exists an R > 1 so every component of
(Cδ\BR) ∩ Σ is a graph over {x3 = 0} with gradient less than ǫ.

Proof. We proceed by contradiction. Suppose there exists a sequence {Ri} with
Ri → ∞ and points pi ∈ (Cδ\BRi

) ∩ Σ such that the component of Bγ|pi|(pi) ∩ Σ
containing pi, Ωi, is not a graph over {x3 = 0} with gradient less than ǫ. Here γ
depends on δ and will be specified later. Now, consider the sequence of rescalings 1

|pi|Σ,
which by possibly passing to a sub-sequence converges to L. Passing to another sub-
sequence, 1

|pi|pi converges to a point p∞ ∈ Cδ ∩ B1. Let Ω̃i = 1
|pi|Ωi. Proposition 1.5

of [12] guarantees that if Bγ(p∞)∩S = ∅ then the Ω̃i converge to Ω̃∞ ⊂ {x3 = x3(p∞)}
as graphs. As S is the sole singular set, we may choose γ sufficiently small, depending
only on δ, to make this happen. Thus, for sufficiently large j, Ω̃j is a graph over
{x3 = 0} with gradient bounded by ǫ, giving the desired contradiction.

Proof. (Proposition 6.2.1) Choose R from Lemma 6.4.2 with δ = ǫ. Note, control on
the gradient bounds the separation between sheets. Thus, increasing R, if necessary,
guarantees N sheets of a graph inside Cǫ.

Proof. (Proof of Proposition 6.2.2) Note that as long as |y| is sufficiently large, Theo-
rem 0.6 of [20] gives an Ω < 1/2 (as well as C1 and C2) so that, since the component of
B 1

2
|y|(y)∩Σ containing y is a disk, there exists a N -valued graph Σ0 over the annulus,

A = DΩ|y|\Ds/2(y) ⊂ P with gradient bounded by ǫ/2, initial separation greater than
C2s and distΣ(Σ0, y) ≤ 2s. Here P is in principle an arbitrary plane in R3.

We claim that Lemma 6.4.2 implies a subset, Σ′
0, of Σ0 is a N -valued graph

over the annulus A′ = DΩ|y|/2\Ds(Π(y)) ⊂ {x3 = 0} with gradient bounded by ǫ,
which further implies Σ′

0 can be extended as desired. To that end we note that for
δ > 1/(4Ω), if y /∈ Cδ then A (and thus, by possibly increasing δ, Σ0) meets Cδ.
Lemma 6.4.2 allows us to choose an R0 > 0 so that every component of Σ∩ (Cδ\BR0

)
is a multi-valued graph over {x3 = 0} with gradient bounded by ǫ/4. Thus if we take
R > 2R0 then there is a point of Σ0 in Cδ\BR0

; therefore, for the gradient estimates
at the point to be consistent, P must be close enough to {x3 = 0} so that we may
choose Σ′

0 ⊂ Σ0 so it is a multi-valued graph over A′. Furthermore, the part of Σ′
0

over the outer boundary of A′ is necessarily inside of Cδ\BR0
and so Lemma 6.4.2

allows us to extend it as desired.

6.4.3 One-sided curvature in Σ

In several places we make use of the one-sided curvature estimate of [22]. Recall, this
result gives a curvature estimate for a minimal disk that is close to and on one side
of a plane. As a sequence of rescaled catenoids shows, it is crucial that the surface be
a disk. In our situation, Proposition 6.4.1 allows the use of the one-sided curvature
estimate far from the genus. For convenience we record the statement we will need
and indicate how it follows from [22]:

63



Corollary 6.4.3. Given ǫ, δ > 0 there exist δ0 > 0 and R > 1 such that, if there
exists a 2-valued δ0-sheet on scale s centered at y where y /∈ Cδ ∪ BR, then all the
components of Σ ∩ (Cδ0\B2s(y)) are multi-valued graphs with gradient ≤ ǫ.

Proof. The result follows immediately from the proof of Corollary I.1.9 of [22] (see
Corollary 3.1.10) as long as one notes that the proof of I.1.9 depends only on each
component of Σ∩CKδ0\Bs(y) being a disk for K some large (universal) constant. We
refer the reader to Figure 3-2. Thus, by Proposition 6.4.1, we need only check that
for a suitable choice of R and upper bound δ′0 for δ0 (both R and δ′0 depending only
on δ), y /∈ Cδ ∪ BR implies CKδ′

0
(y) is disjoint from B1 (i.e. from the genus).

Now suppose x ∈ CKδ′
0
(y) and think of x and y as vectors. By choosing δ′0

sufficiently small (depending on δ) we have that |〈x− y, y〉| < (1 − γ)|y||x− y| (that
is the angle between x − y and y is bounded away from 0◦); note 1 > γ > 0 depends
only on δ. But then |x|2 = |x− y + y|2 ≥ |x− y|2 + 2〈x− y, y〉+ |y|2 ≥ γ|y|2. Hence,
picking R2 > 1

γ
suffices.

6.4.4 Geometric Bounds near blow-up pairs

We record the following extension of Lemma 2.26 of [24] to surfaces with non-trivial
topology. The proof is identical to that of Lemma 2.26 as long as one replaces Colding
and Minicozzi’s compactness result for minimal disks, i.e. Theorem 0.1 of [22], with
the more general Theorem 0.6 of [12]:

Proposition 6.4.4. Given K1, g there exists a constant K2 such that: if Σ ⊂ R3 is
an embedded minimal surface of genus g, Σ ⊂ BK2s(y) and ∂Σ ⊂ ∂BK2s(y) and (y, s)
is a blow-up pair, then we get the curvature bound:

(6.2) sup
BK1s(y)∩Σ

|A|2 ≤ K2s
−2.

An immediate corollary is that, for blow-up pairs far from the genus, the scale is
small relative to the distance to the genus.

Corollary 6.4.5. Given α, C1 > 0 there exists an R such that for (y, s), a C1 blow-up
pair of Σ with |y| ≥ R then s < α|y|.

Proof. Recall we have normalized Σ so supB1∩Σ |A|2 ≥ 1. Now suppose the result
did not hold. Then there exists a sequence (yj, sj) of C1 blow-up pairs with |yj| ≥ j
and sj ≥ α|yj|. Set K1 = 2/α. By Proposition 6.4.4 there exists K2 such that
supBK1sj

(yj)∩Σ |A|2 ≤ K2s
−2
j . Since B1 ⊂ BK1sj

(yj), supB1∩Σ |A|2 ≤ K2s
−2
j . But

sj ≥ α|yj| ≥ αj, thus for j sufficiently large one obtains a contradiction.
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Chapter 7

The Space of Genus-g Helicoids

The goal of this chapter is to investigate how one might further restrict the space
genus-g helicoids, i.e. more fully understand the finer geometric structure of elements
of E(1, g). We do so by showing, after a suitable normalization, a certain compactness
result for these spaces. Unfortunately, this result can not rule out the “loss” of genus
and so does not give much new geometric information for g > 1. However, we have
the following strong compactness result for genus-one surfaces:

Theorem 7.0.6. Let Σi ∈ E(1, 1) and suppose that all the Σi are asymptotic to H, a
fixed helicoid. Then, a sub-sequence of the Σi converge uniformly in C∞ on compact
subsets of R3 to Σ∞ ∈ E(1, 1) ∪ {H} with Σ∞ asymptotic to (or equaling) H.

To prove this result, we must develop a more general compactness theory. Indeed,
we prove some results that specialize and extend the compactness theory of Colding
and Minicozzi developed in [12]. Specifically, suppose Σi is a sequence of minimal
surfaces with finite genus and connected boundary. Then if ∂Σi ⊂ ∂BRi

, Ri → ∞,
and one has an appropriate normalization, then a sub-sequence converges smoothly
on compact subsets of R3 to an embedded finite (and positive) genus minimal surface
with one end, i.e. an element of E(1, +) which (as we have seen in Chapter 6)
is a genus-g helicoid. Obviously, some normalization is required to obtain smooth
convergence; as is clear by looking at the rescalings of a genus-one helicoid. We
consider two different normalizations – one intrinsic and one extrinsic. Intrinsically,
we normalize by demanding that the injectivity radius is everywhere bounded below
by 1 and that 0 ∈ Σi has injectivity radius uniformly bounded above – a very natural
condition from the point of view of metric geometry. We also introduce a slightly more
technical extrinsic normalization – we defer a precise definition of it to Section 7.3.
Roughly speaking, in the extrinsic case, we normalize so that near 0 one has a handle
of Σ of a fixed extrinsic “size”. Ultimately, we show that the two normalizations are
equivalent. While the definition of the extrinsic normalization is more technical, it is
very natural from the point of view of Colding and Minicozzi theory and likely easier
to verify in application.

Without any assumptions on the scale of the topology, the bound on the genus
and the fact that Ri → ∞ is enough to apply the compactness theory of Colding and
Minicozzi [12] (see Section 3.2.3). That is, either a sub-sequence converges smoothly
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on compact subsets of R
3 to a complete surface or a sub-sequence converges to a

singular lamination in a manner analogous to the homothetic blow-down of a helicoid.
Thus, the main thrust of this chapter will be to show that uniform control on the
scale of the genus rules out the singular convergence.

Let us define E(e, g, R) to be the set of smooth, connected, properly embedded
minimal surfaces, Σ ⊂ R3, so that Σ has genus g and ∂Σ ⊂ ∂BR(0) is smooth,
compact and has e components. Additionally, let E(e, g,∞) = E(e, g) be the set of
complete embedded minimal surfaces with e ends and genus g. Note, that for e = 1
this agrees with our previous definitions. We then have the following compactness
results:

Theorem 7.0.7. Suppose Σi ∈ E(1, g, Ri) (g ≥ 1) with 0 ∈ Σi, inj Σi
≥ 1, inj Σi

(0) ≤
∆0 and Ri/r+(Σi) → ∞. Then a sub-sequence of the Σi converges uniformly in C∞

on compact subsets of R3 with multiplicity 1 to a surface Σ∞ ∈ ∪g
l=1E(1, l).

Theorem 7.0.8. Suppose Σi ∈ E(1, g, Ri) (g ≥ 1) with r−(Σi) = 1, r−(Σi, 0) ≤
C, and Ri/r+(Σi) → ∞. Then a sub-sequence of the Σi converges uniformly in
C∞ on compact subsets of R3 with multiplicity 1 to a surface Σ∞ ∈ ∪g

l=1E(1, l) and
r−(Σ∞, 0) ≤ C.

The above theorems are, respectively, our compactness result for intrinsically nor-
malized sequences and for extrinsically normalized sequences. The technical defi-
nitions in the statements are thoroughly explained in Section 7.3, in particular see
Definitions 7.3.1, 7.3.3 and 7.3.4.

Recall, that Corollary 6.0.9 of Chapter 6, tells us that any element of E(1, g) is
asymptotic to a helicoid. It is natural to investigate whether there is a connection
between the scale of the asymptotic helicoid (a global quantity) and the scale of
the genus (an essentially local quantity). When g = 1 such a connection can be
established, as trivially r−(Σ) = r+(Σ), and so Theorem 7.0.8 is particularly strong.
Indeed, one has Theorem 7.0.6, that is, compactness in the space E(1, 1), as long as
the asymptotic helicoid is fixed. In particular, for surfaces with genus one, there is a
uniform relationship between the scale of the asymptotic helicoid and the scale of the
genus. Note that Theorem 7.0.6 is a generalization of a result of Hoffman and White
in [40], there they prove such a compactness result after imposing strong symmetry
assumptions.

Finally, Theorem 7.0.8 allows one to give an effective geometric description of
minimal surfaces with genus one and connected boundary, comparable to the descrip-
tion of the shape of embedded minimal disks near a point of large curvature given by
Theorem 5.1.1:

Theorem 7.0.9. Given ǫ > 0 and R ≥ 1 there exists an R′ = R′(ǫ, R) ≥ R so that if
Σ ∈ E(1, 1, R′) with r−(Σ) = 1 and the genus of Σ is centered at 0, then the component
of BR(0)∩Σ containing the genus is bi-Lipschitz with a subset of an element of E(1, 1)
and the Lipschitz constant is in (1 − ǫ, 1 + ǫ).

This chapter will appear in [1].
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7.1 Outline of Argument

The proofs of Theorems 7.0.7 and 7.0.8 rely on Colding and Minicozzi’s fundamental
study of the structure of embedded minimal surfaces in R3. In particular, we make
use of three important consequences of their work: the one-sided curvature estimates
(see Section 3.1.4); the chord-arc bounds for minimal disks (see Section 3.2.2); and,
most importantly, their lamination theory for finite genus surfaces (see Section 3.2.3).
As our work depends most critically on this last result, we refer the reader to the
discussion of it in Section 3.2.3.

To prove 7.0.7, we first prove a compactness result for a larger class of surfaces.
The price we pay is that we no longer have as much information about the topology
of the limiting surfaces. This result is of some interest in it’s own right and should
be compared to very similar results obtained by Meeks, Perez and Ros, [42, 43]:

Theorem 7.1.1. Let Σi ∈ E(e, g, Ri) (e, g ≥ 1) be such that 0 ∈ Σi, inj Σi
≥ 1,

inj Σi
(0) ≤ ∆0 and Ri → ∞ then a sub-sequence of the Σi converge smoothly on

compact subsets of R3 and with multiplicity one to a non-simply connected minimal
surface in ∪1≤k≤e+g,0≤l≤gE(k, l).

We will use the lamination theory of [12] to show Theorem 7.1.1. Note, the uniform
lower bound on the injectivity radius and the weak chord-arc bounds imply that there
is a uniform extrinsic scale on which the surfaces are simply connected. This allows
for the local application of the work of Colding and Minicozzi for disks [19–22]. In
particular, the sequence of Σi is ULSC (see Definition 3.2.4).

The uniform upper bound on the injectivity radius at 0 implies the existence of a
closed geodesic, in each Σi, close to 0 and which have uniformly bounded length. Using
these closed geodesics and the lamination theorem, we show uniform curvature bounds
on compact subsets of R3 for the sequence. Indeed, suppose one had a sequence that
did not have uniform curvature bounds. Then a sub-sequence would converge to a
singular lamination as in Section 3.2.3. The nature of the convergence implies that
any sequence of closed geodesics in the surfaces, which have uniform upper bounds
on their lengths and that that don’t run off to ∞, must converge (in a Hausdorff
sense) to a subset of the singular axis. This is finally ruled out by noting that the
uniform scale on which the surfaces are simply connected, allows us to use the one-
sided curvature estimate and the weak chord-arc bound to obtain a contradiction.
The uniform curvature bounds and Schauder estimates allow us to appeal to the
Arzela-Ascoli theorem and which together give the convergence.

As an immediate consequence, we deduce that, for sequences in E(1, g, Ri), as
long as the genus stays inside a fixed uniform ball and does not shrink off, then one
has convergence to an element of E(1, g). Indeed, with such uniform control, the no-
mixing theorem of [12] implies that there is a uniform lower bound on the injectivity
radius and so Theorem 7.1.1 applies; that the genus remains in a fixed compact
space implies that the limit surface must belong to E(1, g). Using this result, the
intrinsically normalized compactness result, i.e. Theorem 7.0.7, proved in Section
7.3, is proved by induction on the genus. When the genus is one, the inner and outer
scales coincide. Furthermore, in this case, it is not hard to relate the extrinsic and
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intrinsic normalizations and so Theorem 7.0.7 follows immediately from the arguments
described above. For larger genus, if one does not have uniform control on the outer
scale, then passing to a sub-sequence gives r+(Σi) → ∞. In this case the no-mixing
theorem of Colding and Minicozzi implies the existence of ri < r+(Σi) with ri → ∞
such that there is a component Σ′

i of Bri
∩Σi so Σ′

i ∈ E(1, g′, ri) where 0 < g′ < g and
the Σ′

i satisfy the conditions of Theorem 7.0.7. Thus, the induction hypothesis and
fact that Σ′

i eventually agrees with Σi on any compact subset of R3 together prove the
theorem. Theorem 7.0.7 allows one to relate the intrinsic and extrinsic normalizations
for arbitrary genus. Theorem 7.0.8 is then a simple consequence of this.

In order to prove our main compactness result, i.e. Theorem 7.0.6, which we
prove in Section 7.4.1, we couple Theorem 7.0.8 with the fact that the surfaces are
asymptotic to helicoids (see Chapter 6). The connection between the convergence on
compact subsets of R3 and the asymptotic behavior at the end is made using certain
path integrals of the holomorphic Weierstrass data.

7.2 Weak Compactness

We will prove Theorem 7.1.1 by using the lamination theory of Colding and Minicozzi.
The key fact is that the weak chord-arc bounds of [24] (see Proposition 3.2.3) allow us
to show that our sequence Σi is ULSC. That is, there is a small, but uniform, extrinsic
scale on which the sequence is simply connected (the uniform lower bounds for the
injectivity radius provide such a uniform intrinsic scale). Thus, the lamination theory
of [12] will imply that either there are uniform curvature bounds on a sub-sequence,
or, on a sub-sequence, one has one of two possible singular convergence models. A
simple topological argument will rule out one of these possibilities and so imply that
the sequence behaves like the blow-down of a helicoid (i.e. like Theorem 3.2.1). This
will be shown to contradict the origin having an upper bound on its injectivity radius,
which proves the desired curvature bounds. One can then appeal to the Arzela-Ascoli
theorem.

7.2.1 Technical lemmas

In order to prove these bounds, we will need four technical lemmas. We first note the
following simple topological consequence of the maximum principle:

Proposition 7.2.1. Let Σ ∈ E(e, g, R) and suppose Br(x) ⊂ BR(0) and ∂Br(x)
meets Σ transversely, then, for any component Σ0 of Σ∩Br(x), ∂Σ0 has at most g+e
components.

Proof. Let Σi, 1 ≤ i ≤ n be the components of Σ\Σ0, note for 0 ≤ i ≤ n, the Σi are
smooth compact surfaces with boundary. Thus, ∂Σi is a finite collection of circles
and so the Euler characteristic satisfies χ(Σ) =

∑n
i=0 χ(Σi). By the classification of

surfaces one has χ(Σ) = 2−2g−e and χ(Σi) = 2−2gi−ei where gi is the genus of Σi

and ei number of components of ∂Σi. Note that,
∑n

i=0 gi ≤ g and
∑n

i=1 ei = e0 + e.
Thus, we compute that e0 = n + g −∑n

i=0 gi. The maximum principle implies that
n ≤ e (as any Σi, for i ≥ 1, must meet ∂BR). Thus, e0 ≤ e + g.
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Next we note it is impossible to minimally embed an (intrinsically) long and thin
cylinder in R3 (compare with [16] and Lemma 4.2 of [24]):

Lemma 7.2.2. Let Γ be an embedded minimal annuli with ∂Γ = γ1 ∪ γ2 where the γi

are smooth and satisfy
∫

γi
|kg| ≤ C1 and ℓ(γi) ≤ C2, i.e. the curves have bounded total

geodesic curvature (in Γ) and bounded length. Then, there exists a C3 = C3(C1, C2)
so that distΓ(γ1, γ2) ≤ C3.

Proof. We proceed by contradiction. That is, assume one had a sequence of Γi satis-
fying the hypotheses of the theorem but so that distΓi(γi

1, γ
i
2) → ∞. We claim that,

for i sufficiently large, there exist disjoint embedded closed curves σi
1 and σi

2 in Γi so
that the σi

j (j = 1, 2) are homotopic to γi
l (l = 1, 2) and one component of Γi\(σi

1∪σi
2)

has positive total curvature. As Γi is minimal, this is impossible, yielding the desired
contradiction.

In order to verify the claim, we note that it is enough (by the Gauss-Bonnet
theorem) to find σi

1, σ
i
2 so that the total geodesic curvature (in Γi) of the σi

j (j = 1, 2)
has appropriate sign. In other words, if we order things so σi

1 lies between γi
1 and σi

2

then we want the total geodesic curvature of σi
1 to be negative with respect to the

normal (in Γi) to σi
1 that points toward γi

1 and similarly we want the total curvature
of σi

2 to be negative with respect to the normal pointing toward γi
2.

Now suppose we translate so γi
1 ⊂ BC2

(0). The Gauss-Bonnet theorem and the
estimates on the total curvature of γi

j (for j = 1, 2) imply that
∫

Γi |A|2 ≤ 4πC1. We
may thus pass to a sub-sequence of the Γi and appeal to the intrinsic version of the
estimates of Choi and Schoen [11]. Hence, there is an R0 > 0 with R0 = R0(C1, C2) so
that for any R > R0 there is an i0 = i0(R) so if i > i0 and distΓi(x, γi

1) ∈ (R0, R) then
|A|2(x) ≤ 1. Thus, one has uniform curvature estimates on compact sets sufficiently
far from γi

1 and so may pass to a limit and appeal to Arzela-Ascoli to see that on
compact subsets of R3\B2C2+2R0

(0) the Γi converge to an embedded minimal surface
Γ∞. Since each Γi has uniformly bounded total curvature this is also true of Γ∞.
By [57], Γ∞ must be asymptotic to a plane or half a catenoid. Note that for a catenoid
or plane (normalized to be symmetric with respect to the origin) by intersecting with
the boundary of a very large (extrinsic) ball one obtains a curve (in the catenoid or
plane) with total curvature less then −π (with respect to the normal pointing inside
the ball). As a consequence, for i sufficiently large one can find σi

1 as desired. The
exact same argument, with Γi translated so γi

2 lies in BC2
(0), allows one to construct

σi
2.

We will also need a certain sort of “stability” result for minimizing geodesics in
flat surfaces:

Lemma 7.2.3. Let Σ ⊂ B2(0) be an embedded disk with ∂Σ ⊂ ∂B2(0). Suppose there
exists u : D3/2(0) → R so the graph

{

(x, u(x)) : x ∈ D3/2(0)
}

= Σ0 ⊂ Σ. Then for
any δ > 0 there is an ǫ > 0 so: if ||u||C2 ≤ ǫ and p± ∈ ∂B1(0) ∩ Σ0 are such that
γ ⊂ Σ0, the minimizing geodesic in Σ0 connecting p±, has γ ∩ Bǫ(0) 6= ∅ then there
is a line 0 ∈ L so that the Hausdorff distance between γ and L∩D1(0) is less than δ.
As a consequence ℓ(γ) ≥ 2 − 2δ.
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Proof. Fix δ > 0 and suppose this result was not true. That is, one has a sequence of
Σi and ui with ui → 0 in C2 and points pi

± connected by minimizing geodesic γi ⊂ Σ0

that meet Bǫi
(0) where ǫi → 0, but the conclusion of the lemma does not hold.

We first note that for i sufficiently large the control on |∇ui| implies that for
any points a, b ∈ Σ0

i , distR3(a, b) ≥ 1
2
distΣ0

i
(a, b). Thus, as the condition imposed on

γi implies that distΣi
(pi

+, pi
−) ≥ 1, it follows that distR3(pi

+, pi
−) ≥ 1/2. Hence, by

passing to a sub-sequence we may assume that ui → 0 and that pi
± → p∞± ∈ ∂D1(0)

and the distance between p∞+ and p∞− is bounded below by 1/2 (and in particular the
points don’t coincide). Now, let L be the line connecting p∞± .

We claim that 0 ∈ L. If this was not the case then ℓ(L ∩ D1(0)) = 2 − 4α for
some α > 0. Let Li be the graph (of ui) over L ∩ D1(0), so Li is a segment that
is a subset of Σi. By the convergence it is clear that one may find an i0 so that
for i ≥ i0, distΣi

(pi
±, Li) < α and ℓ(Li) < ℓ(L ∩ D1(0)) + α. Thus, for i ≥ i0, one

has distΣi
(pi

−, pi
+) < 2 − α. On the other hand, the hypotheses imply that there is

a pi ∈ γi with pi → 0. In particular, by increasing i0 if needed, one has for i ≥ i0,
distΣi

(pi
±, pi) ≥ distR3(pi

±, pi) ≥ 1 − α/2. But then distΣi
(pi

−, pi
+) ≥ 2 − α.

Arguing similarly, we see that L ∩ D1(0) must be Hausdorff close to γi, when i is
sufficiently large, yielding the desired contradiction. Finally, we note that the length
estimate follows as the two segments are Hausdorff close.

We make the following definition:

Definition 7.2.4. Suppose γ ⊂ R3 is a smooth, immersed closed curve parametrized
by f : S1 → γ. For a fixed compact subset K of R3 we say γ′ ⊂ γ is an arc of γ in
K (through p) if γ′ = f(I ′) where I ′ is a connected component of f−1(K ∩ S1) (and
p ∈ γ′).

Remark 7.2.5. If γ is embedded then an arc in K is just a component of γ ∩ K.

Our final technical lemma shows that, for a sequence of Σi converging to a minimal
lamination with nice singular set, any closed geodesics in the Σi, that are of uniformly
bounded length and that do not run off to infinity, must collapse to the singular set.

Lemma 7.2.6. Fix ∆, C > 0. Suppose Σi ∈ E(e, g, Ri), Ri → ∞, the Σi converge
to the singular lamination L with singular set S = Sulsc in the sense of Colding and
Minicozzi [12], and that S is the x3-axis. Then, given ǫ > 0 there exists an i0 so
that for i ≥ i0, if γi is a closed geodesic in Σi, with ℓ(γi) ≤ 2∆ and γi ⊂ BC∆, then
γi ⊂ Tǫ(S), the extrinsic ǫ-tubular neighborhood of S.

Proof. Suppose the lemma was not true; then there exists a sub-sequence of the
Σi so that γi intersects Kǫ = BC∆(0)\Tǫ(S). As a consequence, there are points
pi ∈ γi ∩ Kǫ that (after possible passing to a further sub-sequence) converge to some
point p∞ ∈ Kǫ. The convergence of [12] implies that for sufficiently large i (so Ri

is large), Bǫ/2(p∞) ∩ Σi converges smoothly to Bǫ/2(p∞) ∩ {x3 = t}t in the sense of
graphs. Let γ′

i be an arc of γi in Bǫ/2(p∞) through pi; then γ′
i is a geodesic segment

with boundary points q±i lying in the boundary of Bǫ/2(p∞). Finally, let us choose Γi

to be the component of Bǫ/2(p∞) ∩ Σi that contains pi.
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For a given δ > 0, there exists i sufficiently large such that Γi, γ′
i satisfy the

hypotheses of Lemma 7.2.3 (up to a rescaling). Notice that for large i, Γi is very
flat and in particular is geodesically convex and hence γ′

i is the minimizing geodesic
connecting q±i . Hence, if Li is the line given by the lemma, γ′

i lies in the δ-tubular
neighborhood of Li∩Dǫ/4. By passing to a sub-sequence, the γ′

i converge to a segment
of a line L in {x3 = x3(p∞)} that goes through p∞.

We next show this is impossible. Clearly at least one of the rays of L starting
at p∞, L+, does not meet S. Thus, there is an ǫ/4 > ǫ0 > 0 so one can cover
L+ by balls of radius ǫ0 that are disjoint from S. Now, let p1

∞ be the point of
intersection of Bǫ0/2(p∞) with L+ and inductively define pk+1

∞ to be the point of
intersection of Bǫ0/2(p

k
∞) with L+ that is further from p∞ than pk

∞. Let γ′
i,1 be an

arc of γ′
i in Bǫ0/2(p

1
∞) (note, for i sufficiently large, the convergence, the fact that

Bǫ0/2(p
1
∞) ⊂ Bǫ/4(p∞), and Ri → ∞ together imply this is non-empty). Moreover,

one then has that γ′
i,1 converge to L ∩ Bǫ0/2(p

1
∞). This comes from applying Lemma

7.2.3, given the fact that an end-point of γ′
i (and thus a point of γ′

i,1) converges to p1
∞.

Now let γ′
i,2 be an arc in Bǫ0/2(p

2
∞) through a point of γ′

i,1 (by increasing i if needed we
may ensure this is non-trivial). By Lemma 7.2.3 and the fact that the γ′

i,1 converge
to L ∩ Bǫ0/2(p

1
∞), the γ′

i,2 converge to L ∩ Bǫ0/2(p
2
∞). Now, fixing some large j0, we

may proceed inductively and define γ′
i,j (for j ≤ j0) to be the arc of γi in Bǫ0/2(p

j
∞)

through a point of γ′
i,j−1. Again, we may have to choose i large enough (depending on

j0) so everything is non-trivial. Note also that, by an inductive argument, we obtain
that γ′

i,j converge to L ∩ Bǫ/2(p
j
∞) as i → ∞.

Notice by construction that for |l − j| ≥ 2, γ′
i,j ∩ γ′

i,l = ∅. Moreover, by the
convergence result, for i sufficiently large, ℓ(γ′

i,j) ≥ ǫ0/2. Choose j0 large enough so
ǫ0j0 ≥ 10∆. This contradicts the upper bound for the length of γi, thus proving the
lemma.

7.2.2 Proof of Theorem 7.1.1

We apply the preceding lemmas in order to show uniform curvature bounds:

Lemma 7.2.7. Let Σi ∈ E(e, g, Ri) be such that 0 ∈ Σi, inj Σi
≥ 1, inj Σi

(0) ≤ C and
Ri → ∞ then a sub-sequence of the Σi satisfy

(7.1) sup
i

sup
K∩Σi

|A|2 < ∞.

Proof. If this was not the case then by the lamination theorem of [12] a sub-sequence
of the Σi would converge to a singular lamination L. For any x ∈ Σi with |x| ≤ Ri/2,
the injectivity radius lower bound and the weak chord-arc bounds of [24] imply that
there is a δ1 > 0 so Bδ1(x) ∩ Σ is a subset of the intrinsic ball of radius 1/2 centered
at x. Fixing x, as long as i is large enough so |x| ≤ Ri/2, this implies that every
component of Bδ1(x) ∩ Σi is a disk. Thus, the sequence of Σi is ULSC and so the
structure of the singular set of L is S = Sulsc. Hence, after rotating if needed,
L = {x3 = t}t∈R

and S is parallel to the x3-axis and consists of either one or two
lines. If there were two lines then pick R0 large enough so that BR0/2(0) meets both
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Figure 7-1: The points of interest in the proof of Lemma 7.2.7.

of them. By the nature of the convergence in this case (modeled on the degeneration
of the Riemann examples see [12] or Section 6.4.2), for any f > 0 there is an i0 so for
i ≥ i0, at least one component of BR0

∩ Σi has boundary consisting of more than f
connected components. This contradicts Proposition 7.2.1 and so does not occur.

We next rule out any singular behavior. To that end, we note that the injectivity
bound at 0 and the non-positive curvature of Σi imply the existence of 0 ∈ γ′

i ⊂ Σi,
a geodesic lasso with singular point 0 and ℓ(γ′

i) ≤ 2∆0 (recall a geodesic lasso is a
closed continuous curve that is geodesic away from one point). For the existence
of such lassos γ′

i we refer to Proposition 2.12 of [10]. Note that the length bound
implies γ′

i ⊂ B3∆0
(0). The fact that Σi has non-positive curvature implies that

γ′
i is not null-homotopic. We may minimize the homotopy class of γ′

i to obtain a
closed geodesic γi, note that Lemma 7.2.2 allows us to do this without worry even
though Σi has boundary. Indeed, either γ′

i intersects γi and so γi ⊂ B6∆0
or as

ℓ(γi) ≤ ℓ(γ′
i) we may apply Lemma 7.2.2 (after smoothing out γ′

i a bit). In the latter
case, distΣi

(γ′
i, γi) ≤ (C − 3)D0 for some large (but uniform) C and so may take

γi ⊂ BC∆0
(0).

Now for ǫ > 0, let Tǫ(S) be the extrinsic ǫ-tubular neighborhood of S. Lemma
7.2.6 then implies there is an iǫ so that for all i ≥ iǫ, γi ⊂ Tǫ(S). For each i, fix
pi ∈ γi so that x3(pi) = min {x3(p) : p ∈ γi} i.e. the lowest point of γi. Then a sub-
sequence of the pi converge to p∞ and, by the above, p∞ ∈ S. Let p+ be the point of
intersection of ∂Bδ0/2(p∞)∩S, chosen so x3(p+) > x3(p∞). Pick i0 large enough so for
i ≥ i0, |p∞−pi| ≤ δ0/4. The choice of δ0 implies that γi is not contained in Bδ0/2(p∞);
but for i ≥ i0, γi meets this ball. Let γ0

i be an arc of γi in Bδ0/2(p∞) through pi. Note
that γ0

i has boundary on ∂Bδ0/2(p∞). Denote these two boundary points by q+
i and

q−i (See Figure 7.2.2). Notice that for i ≥ i0, δ0/3 gives a uniform lower bound on
the intrinsic distance between q+

i and q−i . To see this we first note that for i ≥ i0 the
length of γ0

i is bounded below by δ0/3, as the extrinsic distance between q±i and pi

is bounded below by δ0/4. On the other hand, by the lower bound on the injectivity
radius, either the intrinsic distance between q−i and q+

i is greater than 1/2 or both
lie in a geodesically convex region and γ0

i must be the unique minimizing geodesic
connecting them.
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Figure 7-2: Illustrating the consequence of the one sided curvature estimates

Now by Lemma 7.2.6, for any δ > 0, there is an iδ ≥ i0 so for i ≥ iδ, q±i ∈ Bδ(p+).
By the one-sided curvature estimate of [22] (see in particular Corollary 3.1.9), there
exist c > 1 and 1 > ǫ > 0 so that if Σ1, Σ2 are disjoint embedded disks in BcR with
∂Σi ⊂ ∂BcR and BǫR∩Σi 6= ∅, then for all components Σ′

1 of BR∩Σ1 that intersect BǫR,
supΣ′

1
|A|2 ≤ R−2. Thus, as long as ǫ

2c
δ0 > δ > 0, because limi→∞ supΣi∩Bδ(p+) |A|2 →

∞, there is an i′δ ≥ iδ so for i ≥ i′δ there is only one component of Bcδ/ǫ(p+) ∩ Σi

that meets Bδ(p+). As a consequence, for ǫ
c
δ0 > δ > 0 and i ≥ i′δ, there is a σi in

Bcδ/ǫ(p+) ∩ Σi that connects q±i (see Figure 7-2).
Now, choose δ small enough so that ( c

ǫ
+1)δ < δ0. Then, for i ≥ i′δ, q−i ∈ B2δ(q

+
i ) ⊂

B c
ǫ
δ+δ(q

+
i ), and thus the component Σδ

i of B c
ǫ
δ+δ(q

+
i ) ∩ Σi that contains q+

i is a disk

and, by the above analysis, q−i ∈ Σδ
i . Let 1 > δ1 > 0 be given by the weak chord

arc bounds (see Proposition 3.2.3) and decrease δ, if necessary, so ( c
ǫ
+ 1)δ < 1

2
δ0δ1.

Then, the intrinsic ball of radius 2( c
ǫ

+ 1)δδ−1
1 centered at q+

i is a disk, and hence
the weak chord arc bounds imply that Σδ

i is a subset of the intrinsic ball of radius
( c

ǫ
+ 1)δδ−1

1 centered at q+
i . Thus, there exists a uniform constant C = ( c

ǫ
+ 1)δ−1

1 so
that distΣi

(q+
i , q−i ) < Cδ as long as i > i′δ. But for δ sufficiently small, this contradicts

the uniform lower bound on the distance between q+
i and q−i , proving the lemma.

Corollary 7.2.8. Suppose 0 ∈ Σi ∈ E(e, g, Ri) are such that inj Σi
≥ 1, inj Σi

(0) ≤
∆0 and Ri → ∞. Then, a sub-sequence of the Σi converges uniformly in C∞ on
compact subsets of R3 and with multiplicity 1 to a non-simply connected surface Σ∞ ∈
E(e′, g′,∞) where e′ ≤ e + g, g′ ≤ g.

Proof. By Lemma 7.2.7, the curvature of the Σi is uniformly bounded on any compact
subset of R3. However, we do not, a priori, have uniform area bounds, and so some
care must be taken in discussing convergence. In particular, the Arzela-Ascoli theorem
and Schauder estimates, only imply that a sub-sequence of the Σi converge smoothly
on compact subsets of R

3 to some complete, embedded (by the maximum principle)
minimal, smooth lamination, L∞.
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We first claim that L∞ does not contain a plane and so is in fact a smooth
minimal surface Σ∞. Suppose L∞ contained a plane P , and choose R > ∆0 so that
∂BR(0) meets each Σi transversely (such an R exists by Sard’s theorem) and let Σ0

i

be the component of BR(0) ∩ Σi that contains 0. Notice that, as inj Σi
(0) ≤ ∆0

and Σi has non-positive curvature, Σ0
i is not a disk and so χ(Σ0

i ) ≤ 0. The smooth
convergence implies that for i sufficiently large there are domains Ωi ⊂ P and smooth
maps ui : Ωi → R so Σ0

i is the graph of ui and the Σ0
i converge smoothly to Σ∞

i ,
moreover the Ωi exhaust DR = P ∩ BR. Thus, we have that the area of Σ0

i is
uniformly bounded as is its total curvature and the geodesic curvature of ∂Σ0

i . Now
by the Gauss-Bonnet theorem,

∫

Σ0
i
K +

∫

∂Σ0
i
kg ≤ 0, whereas

∫

DR
K +

∫

∂DR
kg = 2π.

However, the smooth convergence implies limi→∞
∫

Σ0
i
K +

∫

∂Σ0
i
kg =

∫

DR
K +

∫

∂DR
kg,

which is clearly impossible.

Thus, L∞ does not contain a plane and hence no leaf of L is stable (by [56]). One
may thus argue as in Appendix B of [12] to see that the Σi converge to some Σ∞
with multiplicity 1. Roughly speaking, if the convergence was with a higher degree of
multiplicity, one would be able to construct a positive Jacobi function on Σ∞ which
would force Σ∞ to be stable (by [29]).

Let the Σ0
i continue to be as above. Then Σ0

i converges uniformly in C∞ on
compact sets and with multiplicity 1 to a surface Σ0

∞ which is a component of
BR(0) ∩ Σ∞. Notice that, by Proposition 7.2.1, Σ0

i has at most e + g boundary
components. If γi = ∂Σ0

i and γ∞ = ∂Σ0
∞, then γi converge to γ∞ smoothly and

with multiplicity one. Then one immediately checks that limi→∞
∫

Σ0
i
K =

∫

Σ0
∞

K and

limi→∞
∫

∂Σ0
i
kg =

∫

∂Σ0
∞

kg and so by the Gauss-Bonnet theorem Σ0
∞ has non-positive

Euler characteristic, i.e. is not a disk. Thus, the maximum principle implies that Σ∞
is not simply connected. The convergence can only decrease the genus and increase
number of ends by the indicated amount which gives the result.

7.3 The Intrinsic and Extrinsic Normalization

We wish to apply Theorem 7.1.1 to sequences of surfaces in E(1, g, Ri). In particular,
we hope to show that the resulting limit surfaces are in E(1, g′,∞) where 0 < g′ ≤ g.
The main tool we will use to restrict the topology of the limit surfaces is the no-
mixing theorem of [12]. In order to apply the no-mixing theorem, we must first treat
sequences that have stronger properties. Namely, we will first show that sequences
which have both upper and lower bounds on the scale of the genus sub-sequentially
converge to elements of E(1, g) and do so without loss of genus. When g = 1, such
strong, two-sided, control follows when either the intrinsic or extrinsic normalization
is imposed. Thus, for genus-one surfaces, Theorems 7.0.7 and 7.0.8 are immediate.
When one does not have an upper bound on the outer scale of the genus. The no-
mixing theorem implies that there is a scale, that is a fixed fraction of r+(Σi), on which
each Σi still has connected boundary and has, as we are below r+(Σi), smaller genus
then g. Thus, one can induct on the genus and obtain the result. Such an argument
would prove both Theorems 7.0.7 and 7.0.8. However, the former is technically easier
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to prove in this manner and with it a simple argument can be given to prove Theorem
7.0.8.

Let us first define the extrinsic scale of the genus precisely:

Definition 7.3.1. For Σ ∈ E(1, g, R) let

(7.2) r+(Σ) = inf
x∈BR(0)

inf {r : Br(x) ⊂ BR(0)

and Br(x) ∩ Σ has a component of genus g} .

We call r+(Σ) the outer extrinsic scale of the genus of Σ. Furthermore, suppose for
all ǫ > 0, one of the components of Br+(Σ)+ǫ(x) ∩ Σ has genus g; then we say the
genus is centered at x.

Remark 7.3.2. Note that one trivially has that r+(Σ) < R.

The outer scale of the genus measures how spread out all the handles are and the
center of the genus should be thought of as a “center of mass” of the handles. We
also need to measure the scale of individual handles and where, extrinsically, they are
located. To that end define:

Definition 7.3.3. For Σ ∈ E(1, g, R) and x ∈ BR(0) Let

(7.3) r−(Σ, x) = sup {r : Br(x) ⊂ BR(0)

and Br(x) ∩ Σ has all components of genus zero}

If, for all r so Br(x) ⊂ BR(0), every component of Br(x) ∩ Σ is of genus zero set
r−(Σ, x) = ∞.

Definition 7.3.4. For Σ ∈ E(1, g, R) let

(7.4) r−(Σ) = inf
x∈BR(0)

r−(Σ, x).

We call r−(Σ) the inner extrinsic scale of the genus of Σ. Furthermore, suppose for
all ǫ > 0, one of the components of Br−(Σ)+ǫ(x) ∩ Σ has positive genus; then we say
that the genus is concentrated at x.

Remark 7.3.5. One easily checks that r+(Σ) ≥ r−(Σ) for Σ ∈ E(1, g, R), with equality
holding if g = 1. When g = 1 we denote the common value by r(Σ).

7.3.1 Two-sided bounds on the genus

We first need a simple topological lemma that is a localization of Lemma 6.4.1 and
is proved using the maximum principle in an identical manner.

Lemma 7.3.6. Let Σ ∈ E(1, g, R) and suppose the genus is centered at x. If B̄r(y)∩
B̄r+(Σ)(x) = ∅ and Br(y) ⊂ BR(0), then each component of Br(y) ∩ Σ is a disk.
Moreover, if B̄r+(Σ)(x) ⊂ Br(y) ⊂ BR(0), then one component of Br(y)∩Σ has genus
g and connected boundary and all other components are disks.
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We wish to use Theorem 7.1.1, but to do so we need to first check that a uniform
extrinsic lower bound on the scale of the genus (i.e. on r−(Σ)) gives a lower, intrinsic,
bound on the injectivity radius. This is true, provided we have a uniform bound on
r+(Σ), by the no-mixing theorem of [12]:

Lemma 7.3.7. Fix 0 < α ≤ 1 and g ∈ Z
+. Then there exists R0 > 1 and 1 > δ0 > 0

depending only on α and g so: If Σ ∈ E(1, g, R) with R ≥ R0, 1 = r−(Σ) ≥ αr+(Σ),
and the genus of Σ is centered at 0, then as long as Bδ0(x) ⊂ BR(0), every component
of Bδ0(x) ∩ Σ is a disk.

Proof. Suppose the lemma was not true. Then, one would have a sequence of surfaces
Σi ∈ E(1, g, Ri) with 1 = r−(Σi) ≥ αr+(Σi), Ri → ∞, and the genus of Σi centered
at 0. Further, there would exist points xi and a sequence δi → 0 so that one of the
components of Bδi

(xi)∩Σi was not a disk. Notice for fixed x and r, if B̄r(x)∩B̄α−1(0) =
∅ with i large enough so Br(x) ⊂ BRi

(0), then each component of Br(x) ∩ Σi is a
disk. Thus, we may assume xi ∈ B2α−1(0). Because the injectivity radius of Σi at xi

goes to zero, we see that supB
2α−1 (0)∩Σi

|A|2 → ∞. Hence, by possible passing to a
sub-sequence, the Σi convergence to a singular lamination L.

Let us now determine L and see that this gives a contradiction. By possibly
passing to a further sub-sequence, we may assume that xi → x∞. Pick i0 large enough
so that |xi − x∞| + δi ≤ 1/8 for all i ≥ i0. Then for i ≥ i0, Bδi

(xi) ⊂ B1/2(x∞) and
thus B1/2(x∞)∩Σi contains a non-disk component. As r−(Σi) > 1/2, this component
has genus zero. By the maximum principle the boundary of this component is not
connected, and hence one checks that x∞ is a point of Sneck of the lamination L (see
Definition 3.2.5).

For any ball Br(x) with B̄r(x) ∩ B̄α−1(0) = ∅ and i large enough so Br(x) ⊂
BRi/2(0), one has that all components of Br(x)∩Σi are disks, and thus the maximum
principle and the no-mixing theorem of [12] implies that the singular set S of L is
contained in Bα−1(0). As a consequence, one may rotate so that L ⊂ {|x3| ≤ α−1}.
Thus, for any k ∈ N there is an ik so that for i ≥ ik, Bk((0, 0, k +2α−1))∩Σi = ∅ and
Ri > k2. Now set Σ̃k = 1

k
Σik , so Σ̃k is a new sequence with the genus still centered

at 0, ∂Σ̃k ∩ Bk(0) = ∅, r+(Σ̃k) ≤ α−1/k → 0, and B1((0, 0, 1 + 2α−1/k)) ∩ Σ̃l = ∅ for
l ≥ k. Clearly the curvature in B3α−1(0) is still blowing up and so by possible passing
to a sub-sequence we have convergence to a singular lamination L̃. But r+(Σ̃k) → 0
implies that 0 ∈ Sulsc while for k > 3α−1, B1/4((0, 0, 1)) ⊂ B1((0, 0, 1 + 2α−1/k))

and so for k > 3α−1, B1/4((0, 0, 1)) ∩ Σ̃k = ∅ which contradicts the lamination result
of [12] for ULSC sequences.

We now show that the injectivity radius of Σ is uniformly bounded above by
∆0r−(Σ), for ∆0 > 0 depending only on the ratio between the inner and outer extrinsic
scales of the genus.

Lemma 7.3.8. There exists R0, ∆0 with R0 ≥ 5∆0 > 10 > 0, so: If Σ ∈ E(1, g, R),
where R > R0, and one of the components, Σ′, of Σ ∩ BR/2(0) satisfies r−(Σ′, 0) ≤ 1
then the injectivity radius of some point of Σ′ ∩ B1(0) is bounded above by ∆0.
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Proof. Pick 0 < δ1 ≤ 1/2 as in the weak chord-arc bounds of [24] (i.e. Proposition
3.2.3). We claim that we may choose ∆0 = 2/δ1 ≥ 3 and R0 = 5∆0. To see this,
suppose that Σ satisfies the hypotheses of the lemma, for some R > R0 and Σ′ was a
component of Σ∩BR/2 so that r−(Σ′, 0) ≤ 1, but the injectivity radius of each point
of Σ′ ∩ B1 is (strictly) bounded below by ∆0.

Notice that, as r−(Σ′, 0) ≤ 1, there is a point x ∈ Σ′ ∩ B1 so that Σx,2 the
component of B2(x) ∩ Σ containing x has non-trivial genus. By assumption and
choice of ∆0, the intrinsic ball of radius ∆0 in Σ centered at x is disjoint from the
boundary and is topologically a disk. Then the weak chord-arc bounds of [24], i.e.
Proposition 3.2.3, imply that the component of B2(x) ∩ Σ containing x is contained
in this disk, which by the maximum principle implies that this component is itself a
disk. This contradiction proves the lemma.

Corollary 7.3.9. Fix 1 ≥ α > 0 and let Σ ∈ E(1, g, R) and suppose that 1 = r−(Σ) ≥
αr+(Σ), R ≥ R0α

−1, the genus is centered at 0, and R0, ∆0 are as above. Then there
is a point p0 ∈ Σ ∩ Bα−1 with inj Σ(x0) ≤ ∆0α

−1.

Proof. The center of the genus at 0 and r+(Σ) ≤ α−1 together imply that r−(Σ, 0) ≤
α−1. Thus, by rescaling, we may apply Lemma 7.3.8 to obtain a point x0 ∈ Bα−1 ∩Σ
so inj Σ(x0) ≤ ∆0α

−1.

We may now prove a compactness result when we uniformly bound both the inner
and outer scales of the genus.

Corollary 7.3.10. Suppose Σi ∈ E(1, g, Ri) are such that 1 = r−(Σi) ≥ αr+(Σi),
the genus of each Σi is centered at 0 and Ri → ∞. Then a sub-sequence of the Σi

converges uniformly in C∞ on compact subsets of R3 and with multiplicity 1 to a
surface Σ∞ ∈ E(1, g,∞) and 1 = r−(Σ∞) ≥ αr+(Σ∞).

Proof. By Lemma 7.3.7, the injectivity radius of the Σi is uniformly bounded below
by δ0 > 0. Moreover, by Corollary 7.3.9 there is a point pi in the ball Bα−1(0) so
that inj Σi

(pi) ≤ ∆0. As a consequence, we may apply Theorem 7.1.1 and obtain a
sub-sequence of the Σi that converges uniformly in C∞ on compact subsets of R3 to
some complete, embedded (by the maximum principle) non-simply connected minimal
surface Σ∞. Moreover, the convergence is with multiplicity one.

Choose R > 2α−1 so that ∂BR(0) meets each Σi transversely (such an R exists by
Sard’s theorem) and let Σ0

i be the component of BR(0) ∩Σi that contains the genus.
Then, Σ0

i converges uniformly in C∞ on compact sets and with multiplicity 1 to a
surface Σ0

∞ which is a component of BR(0) ∩ Σ∞. If γi = ∂Σ0
i and γ∞ = ∂Σ0

∞, then
γi converge to γ∞ smoothly and with multiplicity one. Then, one immediately checks
that limi→∞

∫

Σ0
i
K =

∫

Σ0
∞

K and limi→∞
∫

Σ0
i
kg =

∫

Σ0
∞

kg and so by the Gauss-Bonnet

theorem Σ0
∞ has genus g. On the other hand, any other components of BR(0) ∩ Σi

are necessarily disks and so one concludes by a similar argument that the same is
true for any other component of BR(0) ∩ Σ∞. Similarly, for any ball disjoint from
BR(0) every component of the intersection of the ball with Σi is a disk and hence the
same is true for Σ∞ and so r+(Σ∞) ≤ α−1. Finally, note that ∂Σ0

i is connected by
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Lemma 7.3.6 and so the same is true of ∂Σ0
i . As a consequence, we conclude that Σ∞

is in E(1, g,∞). Notice that the above argument gives r−(Σ∞) < R for a dense set
of R > 1 and hence r−(Σ∞) ≤ 1. On the other hand as B1−δ(x) ∩ Σi contains only
components of genus zero, this is also true of Σ∞ and so r−(Σ∞) > 1 − δ. Letting
δ → 0 gives the final conclusion.

7.3.2 Intrinsic normalization

The weak-chord arc bounds of [24] imply that a uniform lower bound on the injectivity
radius of Σ gives a uniform lower bound on the scale of the genus of Σ, i.e. on r−(Σ).
Thus, to prove Theorem 7.0.7 we must understand what happens with the outer scale.

For genus-one surfaces, control on the inner scale of the genus automatically im-
plies control on the outer scale (as they are equal), moreover, an easy argument
relates this scale to the injectivity radius at 0. In particular, Theorem 7.0.7 follows
immediately from Corollary 7.3.10 for genus-one surfaces. On the other hand, when
the genus is ≥ 2, the possibility remains that the outer scale is unbounded and so
Corollary 7.3.10 cannot be immediately applied. However, in this case, the lamina-
tion theory of Colding and Minicozzi [12] implies that by restricting to a scale that is
a fixed fraction of the outer scale, there exists a connected component of the surface
with connected boundary, smaller genus, and suitable control on the outer scale of
the surface relative to the new scale of the genus. That is, one may induct on the
genus. This is precisely how we will prove Theorem 7.0.7:

Theorem 7.3.11. Suppose Σi ∈ E(1, g, Ri) (g ≥ 1) with 0 ∈ Σi, injΣi
≥ 1, injΣi

(0) ≤
∆0 and Ri/r+(Σi) → ∞. Then a sub-sequence of the Σi converges uniformly in C∞

on compact subsets of R
3 with multiplicity 1 to a surface Σ∞ ∈ ∪g

l=1E(1, l).

Proof. First note that the lower bound on the injectivity radius and the weak chord-
arc bounds of [24] (i.e. Proposition 3.2.3) imply that r+(Σi) ≥ r−(Σi) > δ0 > 0.
Thus, Ri → ∞. If there is a sub-sequence of the Σi so r+(Σi) ≤ C, then Lemma
7.3.6 and the upper bound on the injectivity radius at 0 together imply that, xi, the
centers of the genus of the Σi, lie in the ball B2C(0). In this case, the theorem follows
immediately from Corollary 7.3.10. Thus, we may assume that limi→∞ r+(Σi) = ∞.

We will handle this by induction on the genus. When g = 1 we consider the
sequence of rescalings of the Σi, Σ̃i = r(Σ)−1Σi. Notice that, r(Σ̃i) = 1, but the
injectivity radius at 0 of this sequence goes to zero. These two facts and Lemma 7.3.6
imply that the centers of the genus, x̃i, lie in B2(0). Thus, Corollary 7.0.8 implies
the sequence contains a convergent sub-sequence which contradicts the injectivity
radius going to 0 at infinity. Thus, r(Σi) ≤ C is uniformly bounded which proves the
theorem when g = 1.

For any g > 1, assume the theorem holds for all 1 ≤ g′ < g. We claim this implies
the result is also true for g, and hence the theorem is true by induction. To that
end let λi = r+(Σi) and set Σ̃i = λ−1

i Σi. Then, the Σ̃i have injectivity radius at 0
going to 0 and r+(Σ̃i) = 1 and so, by Lemma 7.3.6, the centers of the genus, x̃i, lie
in B3(0). Because, inj Σ̃i

(0) → 0, the curvature of the sequence blows-up at 0. Thus,

up to passing to a sub-sequence, Σ̃i converges to a lamination L̃ with singular set S.
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The fact that the centers of the genus of Σ̃i are near 0, r+(Σ̃i) = 1 and the no-mixing
theorem of [12] together imply that, up to passing to a further sub-sequence, 0 ∈ Sulsc.
For details on why this is so, see the proof Lemma 7.3.7.

Thus, by definition (see 3.2.4), there is a radius 0 < r < 1 and radii ri → 0 so
that Br(0) ∩ Σ̃i has the same genus, g̃i, as Bri

(0) ∩ Σ̃i and the boundary of each
component of Bri

(0) ∩ Σ̃i is connected. We claim that there exists r′ ≤ r so that,
after possibly passing to a sub-sequence, each component of Br′(y∞) ∩ Σ̃i also has
connected boundary. Indeed, if this was not the case then one could find r̃i ∈ (ri, r)
with r̃i → 0 and some component of Br̃i

(y∞) ∩ Σ̃i having disconnected boundary.
But notice the genus of Br̃i

(y∞) ∩ Σ̃i is equal to the genus of Br(y∞) ∩ Σ̃i, but, by
definition, this would imply y∞ ∈ Sneck, contradicting the no-mixing theorem.

The facts that inj Σ̃i
(0) → 0, ri → 0 and r+(Σ̃i) = 1 together imply 1 ≤ g̃i < g.

Let Σ̃′
i be the component of Br′(0) ∩ Σ̃i that contains 0 and let Σ′

i = λiΣ̃
′
i. Then

Σ′
i ∈ E(1, g′

i, λir
′), where 1 ≤ g′

i ≤ g̃i < g. Notice that, r+(Σ′
i) ≤ riλi and so

(7.5)
λir

′

r+(Σ′
i)

≥ r′

ri
→ ∞.

In addition, by passing to sub-sequence, there is a g′, so 1 ≤ g′ < g and Σ′
i ∈

E(1, g′, λir
′). Thus, Σ′

i satisfies the conditions of the inductive hypothesis and so
contains a further sub-sequence that converges smoothly and with multiplicity one to
a surface Σ′

∞ ∈ E(1, g′′) where 1 ≤ g′′ ≤ g′. Notice that Σ′
∞ is properly embedded

and the Σ′
i converge to Σ′

∞ with multiplicity 1. Moreover, there can be no complete
properly embedded minimal surface in R3\Σ∞. Thus, for any fixed compact subset
of R3, K, and for i sufficiently large, depending on K, Σi ∩ K = Σ′

i ∩ K, and so Σi

converge to Σ′
∞, which proves the theorem.

7.3.3 Extrinsic normalization

Having proved Theorem 7.0.7, we now use it to prove Theorem 7.0.8. In order to do
so, we need to show that a uniform lower bound on the scale of the genus (i.e. on
r−) gives a lower bound on the injectivity radius. Recall, in Lemma 7.3.7 this was
proved, using the no-mixing theorem, assuming also an upper bound on the scale of
the genus. Theorem 7.0.7 allows us to remove this second condition. That is:

Lemma 7.3.12. Fix g ∈ Z+, then there exists Ω = Ω > 8 and α0 = α0 > 0,
depending on g, so: For R > 1 if Σ ∈ E(1, g, R), r−(Σ) = 1 and R ≥ Ωr+(Σ) then
for all p ∈ BR/2 ∩ Σ, inj Σ(p) ≥ α0.

Proof. Suppose the lemma was not true and that one had a sequence of Ωi → ∞ and
Σi ∈ E(1, g, Ri) so that r−(Σ)i = 1 and Ri ≥ Ωir+(Σ), but minB̄Ri/2∩Σi

inj Σi
→ 0

(recall, inj Σ(p) is a continuous function in p). Notice that, as r+(Σ) ≥ 1, Ri → ∞.
Let pi be a point of Σi ∩ BRi/2 so λi = inj Σi

(pi) = minB̄Ri/2∩Σi
inj Σi

. Proposition

7.3.6, implies that |pi| ≤ 2r+(Σi) ≤ 2Ri

Ωi
. Notice that BRi/4(pi) ⊂ BRi/2(0), because

Ωi > 8. Also, by assumption r−(Σi, pi) ≥ 1.
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Now let Σ′
i = λ−1

i ((Σi)pi,Ri/4 − pi) (recall, Σx,R is the component of BR(x) ∩ Σ
containing x). By Proposition 7.3.6, Σ′

i ∈ E(1, g′
i, λ

−1
i Ri/4) where 1 ≤ g′

i ≤ g and
Ωir+(Σ′

i) ≤ λi
−1Ri. Moreover, the injectivity radius of Σ′

i is uniformly bounded below
by 1 and inj Σ′

i
(0) = 1. Thus, we may apply Theorem 7.0.7 to see that a sub-sequence

of the Σ′
i converge to an element Σ′

∞ ∈ E(1, g′) where 1 ≤ g′ ≤ g. Notice that g′ ≥ 1
and so r−(Σ′

∞, 0) = C < ∞. But this implies that r−(Σ′
i, 0) ≤ 2C for sufficiently

large i. But this, in turn, implies that r−(Σi, 0) ≤ 2Cλi < 1, for large enough i, which
is a contradiction and proves the lemma.

We can now easily prove Theorem 7.0.8:

Theorem 7.3.13. Suppose Σi ∈ E(1, g, Ri) (g ≥ 1) with r−(Σi) = 1, r−(Σi, 0) ≤ C,
and Ri/r+(Σi) → ∞. Then, a sub-sequence of the Σi converges uniformly in C∞

on compact subsets of R3 with multiplicity 1 to a surface Σ∞ ∈ ∪g
l=1E(1, l,∞) with

r−(Σ∞) ≤ C.

Proof. By replacing Σi by the component of Σi ∩ BRi/Ω that contains the genus,
Lemma 7.3.12 tells us that the injectivity radius of Σi is uniformly bounded below by
α0 > 0. On the other hand, because r−(Σi, 0) ≤ C, a rescaling of Lemma 7.3.8 implies
that inj Σi

(pi) ≤ ∆0C, for some pi ∈ B1 ∩ Σi, as long as i is sufficiently large. Thus,
the Σi satisfy the conditions of Theorem 7.0.7 which allows us extract a convergent
sub-sequence.

7.4 Applications

The compactness results developed in the previous section are particularly strong for
sequences of genus-one surfaces, as there is no “loss” of genus. In particular, they
proved more information about the geometric structure of elements of E(1, 1, R). We
present two such results in this section.

7.4.1 Compactness of E(1, 1)

Throughout this section, we consider only complete surfaces. Recall, in Chapter 6,
we showed that any Σ ∈ E(1) is conformally a once punctured compact Riemann
surface and, if it is not a plane, is asymptotic (in a Hausdorff sense) to some helicoid.
When the genus is positive there are at least two interesting scales, the scale of the
asymptotic helicoid and the scale of the genus. In principle, one might expect a
relationship between these two scales. This is the case for genus one, however, due to
the possibility that one may “lose” genus, as noted in Theorem 7.0.8, we cannot (as
yet) establish such a connection for genus 2 or greater.

Let us now focus on the space E(1, 1), i.e. genus-one helicoids. We show that, for
any Σ ∈ E(1, 1), there is an upper and lower bound on the ratio between the scale of
the genus and the scale of the asymptotic helicoid. As a consequence, we deduce that
any sequence of elements of E(1, 1) that are asymptotic to the same helicoid H has
a sub-sequence that converges smoothly on compact subsets to an element of E(1, 1)
that is also asymptotic to H (or to H itself).
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Theorem 7.4.1. Let Σi ∈ E(1, 1) and suppose that all the Σi are asymptotic to H, a
fixed helicoid. Then, a sub-sequence of the Σi converge uniformly in C∞ on compact
subsets of R3 to Σ∞ ∈ E(1, 1) ∪ {H} with Σ∞ asymptotic to (or equaling) H.

Remark 7.4.2. Translations along the axis show H may occur as a limit.

The theorem will follow from evaluating certain path integrals of holomorphic
Weierstrass data. To that end, we first establish a uniform R such that all vertical
normals of each Σi (after a rotation) occur in BR(0). We then find annular ends Γi,
conformally mapped to the same domain in C by zi = (x3)i +

√
−1(x∗

3)i and with
Weierstrass data as described Corollary 6.0.8. Finally, we use calculus of residues
on ∂Γi to establish uniform control on the center and radius of the genus for a sub-
sequence of Σi.

Note that Theorem 6.1.1 implies that for Σ ∈ E(1, 1), there are two points where
the Gauss map points parallel to the axis of the asymptotic helicoid. As mentioned,
we first need to gain uniform control on the position of these points.

Lemma 7.4.3. Suppose Σ ∈ E(1, 1), the genus of Σ is centered at 0, r(Σ) = 1, and
that g, the usual stereographic projection of the Gauss map of Σ, has only a single
pole and single zero. Then there is an R ≥ 1 independent of Σ so that the pole and
zero of g lie in BR(0) ∩ Σ.

Remark 7.4.4. Theorem 6.1.1 implies that, after translating, rescaling and rotating
any Σ ∈ E(1, 1) appropriately, the conditions of the lemma apply.

Proof. Suppose this was not the case. That is, one has a sequence Σi ∈ E(1, 1) so
that the genus of each Σi is centered at 0, r(Σi) = 1, and each gi has a single pole and
single zero, at least one of which does not lie in Bi(0). By rotating Σi, we may assume
the pole does not lie in Bi(0). By Corollary 7.0.8 a sub-sequence of the Σi converge
uniformly in C∞ on compact subsets of R3, with multiplicity 1, to Σ∞ ∈ E(1, 1) where
r(Σ∞) = 1.

We note that Theorem 6.1.1 implies, by our normalization of the Σi, that for
i < ∞, dgi

gi
is meromorphic with a double pole at ∞. Moreover, g∞ has at least

one zero. We claim it has only one zero and one pole and consequently, dg∞
g∞

is
meromorphic with a double pole at ∞.

Suppose g∞ has more than one zero and call two such zeros q1, q2 ∈ Σ∞. Denote
by σj

∞ a closed, embedded curve in the component of Bδ0/2(qj) ∩ Σ∞ that contains
qj , chosen so that σj

∞ surrounds qj but neither surrounds nor contains any other pole
or zero of g∞. Additionally, we choose the two σj

∞ to be disjoint. Thus,
∫

σj
∞

dg∞
g∞

=

2π
√
−1.

By the convergence, there are smooth, embedded, closed curves σj
i (j = 1, 2) in Σi

so that σj
i converges smoothly to σj

∞. Let Dj
i ⊂ Σi denote a disk such that ∂Dj

i = σj
i .

For large enough i, D1
i ∩ D2

i = ∅. Because there is at most one zero of gi in Σi, for
each i either

∫

σ1
i

dgi

gi
= 0 or the same is true for σ2

i (for i sufficiently large there can

be no pole by assumption, though the claim still follows without this hypothesis).
Letting i go to ∞ gives a contradiction; so g∞ has only one zero. Similarly, g∞ has
only one pole.
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To conclude the proof, note there exists some R1 such that the pole, p∞, of g∞ is
in BR1

∩ Σ∞. Let σ∞ ⊂ Σ∞ be a smooth, embedded, closed curve in Bδ0/2(p∞) that

surrounds p∞ and neither contains nor surrounds the zero of g∞. Thus,
∫

σ∞

dg∞
g∞

=

−2π
√
−1. Then by our convergence result, there are smooth, embedded, closed curves

σi ⊂ Σi ∩B3δ0/4(p∞), with σi converging to σ∞. Note σi is necessarily null-homotopic
and by perturbing, if necessary, we may assume gi has no zero on σi. For i large
enough so σ∞ ⊂ Bi/2(0) we compute 1

2π
√
−1

∫

σi

dgi

gi
≥ 0 (as σi may contain the zero

of gi). Letting i go to infinity and using the smooth convergence, one obtains a
contradiction.

Before proving the main compactness result, Theorem 7.0.6, we establish the
necessary uniform control on the center and radius of the genus for surfaces in E(1, 1)
that are asymptotic to a fixed helicoid H . Throughout the following proof, we make
repeated use of results from Section 6.3.

Lemma 7.4.5. Let Σi ∈ E(1, 1) and suppose that all the Σi are asymptotic to the
same helicoid, H, which has axis the x3-axis. Then, there exist C1, C2 > 0 and a
sub-sequence (also called Σi) such that 1/C1 ≤ r(Σi) ≤ C1 and, after a rotation,
|x1(pi)| + |x2(pi)| ≤ C2, where pi is the center of the genus of each Σi.

Proof. Translate each Σi by −pi so that the genus of each of the Σi is centered at 0.
Then rescale each Σi by αi so that after the rescaling r(Σi) = 1. Thus, each rescaled
and translated surface Σi is asymptotic to the helicoid Hi = αi(H − pi).

By Corollary 7.0.8, passing to a sub-sequence, Σi converges uniformly on compact
sets to some Σ∞ with multiplicity one. By Corollary 6.0.9 we know that Σ∞ is
asymptotic to some helicoid H ′. Now since each Σi is asymptotic to Hi, which has an
axis parallel to H , after possible rotating so H is a vertical helicoid, the stereographic
projection gi of the Gauss map of Σi has exactly one pole and one zero. Thus, as in
the proof of Lemma 7.4.3, we can conclude the same for Σ∞.

Now pick R big enough so that both the zero and pole of g∞ lie on the component
of BR(0) ∩ Σ∞ containing the genus and so ∂B2R(0) meets each Σi, 1 ≤ i ≤ ∞,
transversely. By our convergence result and Lemma 7.4.3 (and in particular arguments
as in the proof of that lemma), there exists an i0 such that, for i0 ≤ i ≤ ∞, the zero
and pole of gi lie in the component Σ0

i of B2R(0)∩Σi containing the genus. Thus, for
i0 ≤ i ≤ ∞, Γi = Σi\Σ̄0

i is topologically an annulus and moreover gi has no poles or
zeros in Γi. Hence, by the arguments of Section 6.3, zi = (x3)i +

√
−1(x3)

∗
i : Γi → C

and fi = log gi : Γi → C are well-defined. (Here (x3)i is x3 restricted to Σi and (x3)
∗
i is

the harmonic conjugate of (x3)i.) Note that, by Chapter 6, fi(p) =
√
−1λizi(p)+Fi(p)

where λi determines the scale of the helicoid Hi and Fi(p) is holomorphic on Γi and
indeed extends holomorphically to ∞ with a 0 there.

By suitably translating (x3)
∗
i , z∞(Γ∞) ⊃

{

z ∈ C : |z| > 1
2
C
}

for some C > 0, and
hence by increasing i0, if needed, for i0 ≤ i ≤ ∞,

(7.6) zi(Γi) ⊃ {z ∈ C : |z| > C} = AC .

By precomposing with z−1
i , we may think of fi as a holomorphic function on AC . If
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u is the standard coordinate of C restricted to AC , then for i0 ≤ i ≤ ∞, fi(u) =√
−1λiu + Fi(u) where Fi is a holomorphic function which extends holomorphically

(and with a zero) to ∞.

Clearly, there is an R′ > 2R so that {p ∈ Γ∞ : |z∞(p)| ≤ 2C} ⊂ BR′(0) thus
by the convergence (and increasing i0) for i0 ≤ i ≤ ∞, {p ∈ Γi : |zi(p)| ≤ 2C} ⊂
B2R′(0). As a consequence, the uniform convergence of Σi to Σ∞ implies that for
γ =

{

u : |u| = 3
2
C
}

⊂ AC , fi → f∞ in C∞(γ). On the other hand, the calculus of
residues implies that for i0 ≤ i ≤ ∞,

(7.7)

∫

γ

fi(u)
du

u2
= −2πλi

and hence we see immediately that λi → λ∞ > 0. Since the initial helicoid H had
some λH associated with its Weierstrass data, this gives an upper and lower bound
on the rescaling of each initial Σi, thus producing the necessary C1.

Since each Fi is holomorphic on AC with a holomorphic extension to ∞ (and a
zero there), we can expand in a Laurent series, i.e. for every u ∈ AC one has

(7.8) Fi(u) =
∞
∑

j=1

ai,j

uj

where this is a convergent sum. Thus, for i0 ≤ i ≤ ∞

(7.9)

∫

γ

fi(u)uj−1du = 2π
√
−1ai,j

and hence limi→∞ ai,j = a∞,j. It follows that Fi → F∞ in C∞(Ā2C), where Ā2C =
{u : 2C ≤ |u| ≤ ∞}.

We now show the Weierstrass representation then implies that Hi converge to
H∞ and hence that x1(pi) → x1(p∞) and x2(pi) → x2(p∞). This will produce the
necessary bound, C2, on the distance between the center of the genus and the axis of
the initial helicoid H . To see this, note that the convergence Fi → F∞ implies there
is a uniform C0 so that for u > 2C and i0 ≤ i ≤ ∞, one can write Fi(u) =

ai,1

u
+ F̃i(u),

where |F̃i(u)| ≤ C0

u2 and |ai,1| ≤ C0. Recall the Weierstrass representation gives that

(7.10) dx1 −
√
−1dx2 = g−1dh − ḡd̄h,

where dh = dx3 +
√
−1dx∗

3 is the height differential. Integrating this form along
{

t + (
√
−1)0 : t ∈ [3C, t1]

}

⊂ AC , we see

(7.11) ((x1)i(t1) − (x1)i(3C)) −
√
−1((x2)i(t1) − (x2)i(3C)) =

∫ t1

3C

Hi(t)dt

where Hi(t) = e−
√
−1(λit+Im Fi(t))(e−Re Fi(t)−eRe Fi(t)). For C sufficiently large, |Fi(t)| ≤
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1/2 and so expanding in a power series,

(7.12) Hi(t) = −2e−
√
−1λit

Re ai,1

t
+ Gi(t)

where here |Gi(t)| ≤ 10C0

t2
.

The first term is a convergent (as t1 → ∞) oscillating integral while the integral
of Gi(t) is absolutely convergent. Thus, there exists a C2 depending only on C0 (and
in particular independent of t1, i) so, for i0 ≤ i ≤ ∞, on each Σi,

(7.13) |(x1)i(t1) − (x1)i(3C)| + |(x2)i(t1) − (x2)i(3C)| ≤ C2.

Recall the translated surfaces Σi have genus centered at zero. Since one finds the axis
by letting t1 → ∞, the above bound shows each translated surface has axis a uniform
distance from the origin. Thus, the original center for each genus, pi, satisfies the
desired uniform bound.

The previous lemma tells us that for any sequence of surfaces in E(1, 1), asymptotic
to a fixed helicoid, there is a sub-sequence with the scale of the genus uniformly
controlled and the center of the genus lying inside of a cylinder. With this information,
we can now show Theorem 7.0.6.

Proof. By the previous lemma, we know that there exists an R > 0 and a sub-sequence
Σi such that r(Σi) → r∞ > 0 and the genus of these Σi is centered in a cylinder of
radius R. With this sort of uniform control on the genus, one can apply Theorem
7.0.8 to show that either the center of the genus goes to ∞, or Σi → Σ∞ ∈ E(1, 1),
which is asymptotic to some helicoid. If the center goes to ∞, the above lemma shows
that it must do so inside of a cylinder around the axis, and hence Σi → H .

By the same techniques of the previous lemma, if the genus does not go to ∞
then, given that fi =

√
−1λHu + Fi(u), we see that f∞ =

√
−1λHu + F∞(u). Thus,

in this case, Σ∞ is in fact asymptotic to the original helicoid H .

7.4.2 Geometric Structure of E(1, 1, R)

An immediate local result of Theorem 7.0.6 is the following theorem. It should be
compared with the structural results of Chapter 5.

Theorem 7.4.6. Given ǫ > 0 and R ≥ 1 there exists an R′ = R′(ǫ, R) ≥ R so that: if
Σ ∈ E(1, 1, R′) with r(Σ) = 1 and the genus of Σ is centered at 0, then the component
of BR(0)∩Σ containing the genus is bi-Lipschitz with a subset of an element of E(1, 1)
and the Lipschitz constant is in (1 − ǫ, 1 + ǫ).

Proof. We proceed by contradiction and assume no such R′ exists. Thus, we obtain
a sequence of Σi ∈ E(1, 1, Ri) with Ri → ∞, r(Σi) = 1, and the genus of each Σi

centered at 0 but Σ0
i , the component of BR(0) ∩ Σi containing the genus, is not bi-

Lipschitz with a subset of any element of E(1, 1). By Corollary 7.0.8, a sub-sequence
of the Σi converges uniformly in C∞ on compact subsets of R3 to Σ∞ ∈ E(1, 1),
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with r(Σ∞) = 1, with multiplicity 1. In particular, Σ0
i , the component of Σi ∩ BR(0)

containing the genus, converges to Σ0
∞, similarly defined. Find C so that max |A

Σ
0

∞

| ≤
C.

Choose R′ large enough to ensure minimizing geodesics between points in Σ0
∞

lie in Σ∞ ∩ BR′/2 (using the properness result of [24]). By the smooth convergence
on compact sets, there exists i0 large such that for all i ≥ i0, minimizing geodesics
between points in Σ0

i lie in Σi ∩BR′ . For any ǫ, and increasing i if necessary, we find
a smooth νi defined on a subset of Σ∞ so that C|νi| + |∇Σ∞

νi| < ǫ and the graph of
νi is the component of Σi ∩ BR′ containing the genus. Then Lemma 5.1.2 gives the
desired contradiction.
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Chapter 8

Conclusion

We have completely understood the conformal and geometric asymptotics of the ends
of elements of E(1). In particular, we have classified the conformal type of surfaces in
E(1) and completely classified the surfaces in E(1, 0). Nevertheless, many interesting
questions remain open. One important task is to verify, for g > 1, that the space
E(1, g) is actually non-trivial. That is, to rigorously prove the existence of genus-
two (and higher) helicoids. Computer graphics suggest that there is an embedded
genus-two helicoid but at present there is no rigorous proof. It is possible that the
compactness theory developed in Chapter 7 might provide some insight in this direc-
tion. Another important question regards the finer geometric structure of elements of
E(1). The most ambitious conjecture in this direction is the following due to Weber,
Hoffman and Wolf (for genus one) [61] and Meeks and Rosenberg (for higher genus):

Conjecture 8.0.7. For each g ≥ 1 there exists a unique (after normalizing) element
of E(1, g)

This result seems a bit optimistic and there is not much intuition as to why such
a strong result should be true. A less ambitious conjecture is:

Conjecture 8.0.8. For each g ≥ 1 there are at most a finite number (after normal-
izing) of elements of E(1, g)

The Weierstrass representation, Theorem 6.1.1 and the compactness theory of
Chapter 7 provide some evidence that this conjecture is at least reasonable. Namely,
Theorem 6.1.1 and standard facts about meromorphic one-forms on compact surfaces
imply that dg

g
and dh are elements in a finite-dimensional vector space (with dimen-

sion bounded in terms of the genus). In other words, they are determined up to a
finite number of parameters. On the other hand, for the Weierstrass representation to
be well-defined, g and dh must satisfy a certain number (depending also on the genus)
of (non-linear) constraints (i.e. the period conditions, see (2.3)). In [7], Bobenko dis-
cusses the construction of immersed genus-g helicoids (see Remark 8.0.10) and notes
that in general this is an over-determined problem. In other words, there are more
non-linear equations coming from the period conditions than there are parameters.
This leads one to believe that the set of such helicoids is, at best, discrete. For E(1, 1)
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this immediately implies by 7.0.6 that one has a finite number of them, whereas for
higher genus one would need a suitable compactness theory.

There are some weaker results that would still be interesting. In [7], Bobenko
also notes that if the underlying once-punctured Riemann surface admits a conformal
involution compatible with the Weierstrass data, then the situation is markedly sim-
pler. Indeed, the number of unknown parameters and number of constraints coming
from the period conditions are not only reduced (which one expects) but actually
become equal. Thus, the problem becomes (at least in principle) well-posed. As the
involution induces (due to the compatibility condition and Weierstrass representa-
tion) a symmetry on the surface (rotation around a coordinate axis by 180◦), this
leads him to the following conjecture:

Conjecture 8.0.9. (Bobenko) Let Σ be an immersed genus-g helicoid, then Σ is
symmetric with respect to a 180◦ rotation around one of the coordinate axes.

Remark 8.0.10. Here an immersed genus-g helicoid is a minimally immersed once
punctured compact Riemann surface whose Weierstrass data at the puncture satisfies
the same conditions as in Theorem 6.1.1.

One would like to prove this for E(1) (i.e. embedded genus g helicoids) as it would
provide a major restriction on the possible conformal structures of elements of genus
greater than 1.
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