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CHAPTER 1

Introduction

These notes are a (slightly) edited version of the material that I presented in
class. I emphasize that there has been essential no proof reading of this material.
I have tried to keep these notes in the order in which I presented the material
in class. However, in some cases I have added some additional material where as
needed (though I have tried to highlight when this has been done order to avoid
confusion) and omitted other off hand remarks. In particular any section with NIC
(for not in class) in in the section heading was not something discussed in class.
Note the numbering of theorems and results is not consistent with any numbering
scheme used in class and I hope this does not cause undo confusion. You should
view this as supplemental to the course texts. As the proof reading has been pretty
much non-existant, I would also greatly appreciate any comments and do let me
know about mathematical errors or typos you may find.
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CHAPTER 2

First Lecture

We begin by recalling some basic definitions and facts. In the class treat both
real R and complex C linear algebra. The former is probably more familiar and
”physical” though the latter is more general (and becomes necessary for the correct
statement of some theorems). Recall C is the complex numbers, we will review these
next lecture. Most aspects of linear algebra that we discuss won’t really depend
on whether we work over R or C. However, as Trefethen and Bau usually works
over C we will do so as well. Unless otherwise stated everything we will do holds
over R and we will often illustrate concepts over R as the geometry. There will be
some cases were the distinction matters and we will point these out! Recall that
the complex numbers are just the real numbers with an additional “imaginary”
number I which we treat like a regular number except I2 = −1. (Note we don’t
use i as we want to reserve that for other purposes).

1. Vectors

For us a vector will be a n-tuple of real or complex numbers. i.e. v is can be
represented by (v1, . . . , vn) for vi ∈ C). We will then say v ∈ Cn. If all the vi are
real then we have v ∈ Rn is the set of n-dimensional vectors over the reals. We
will also say v is a real vector. Rather than write vectors as n-tubles we will always
write them as columns.

v =

v1

...
vn


While the difference between tuples and columns is notational there is a more
fundamental difference between the two. An n-tuple should really be though of as
just an (ordered) list of numbers while the vector has some additional geometric
and algebraic meaning. It is a subtle point, but conceptually important to make
this distinction.

As we know we can add vectors. Let v,w ∈ Cn with

v =

v1

...
vn

 ,w =

w1

...
wn


then

v + w =

v1 + w1

...
vn + wn
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6 2. FIRST LECTURE

Geometrically, if we have (say) R vectors this corresponds to laying the vectors end
to end. Notice v + w = w + v and we see this geometrically as well.

We may also multiply vectors by a scalar number λ ∈ C

λv :=

λv1

...
λvn


Geometrically, for R vectors this corresponds to stetching the vector by a factor
of |λ| and reversing direction if λ < 0. We can also multiply on the left side by a
scalar and

vλ := λv.

Finally, scalar multiplication interactions with sums in the usual way, namely:

λ(v + w) = λv + λw.

Let us recall some important vectors:

0 :=

0
...
0


the additive identity. This geometrically this corresponds to “doing nothing” and
0 + v = v + 0 = v and λ0 = 0. The “standard basis vectors”

ei =



0
...
1
...
0

 ith slot

If n = 3 and we consider real vectors then e1 = i, e2 = j, e3 = k. Note we can
always write a vector v ∈ Cn (uniquely) as

v =
n∑

i=1

viei =



v1

...
vi

...
vn


For vi ∈ C (or ∈ R if v is a real vector). That is the ei are a basis of Cn (we will
come back to this latter)..

2. Linear Transformations

Vectors are the basic object in linear algebra but are not all that interesting
in and of themselves. More interesting is to study transformations of vectors.
In the context of linear algebra we restrict attention to Linear Transformations.
That is transformations that respect the linear structure (i.e. addition and scalar
multiplication). More precisely a linear transformation is a function

T : Cn → Cm
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so that T (v + w) = T (v) + T (w) and T (λv) = λT (v). This class will mostly
consist of studying linear transformations. However, just as we think of a vector as
a concrete list, we will also think of a linear transformation as a concrete object–
namely as an array of numers called a matrix.

Recall a complex valued matrix is just an m × n array of complex numbers
(when all the entries are real we say it is real matrix ):

A :=

a11 · · · a1n

...
. . .

...
am1 · · · amn

 =
[
a1 | · · · | an

]
where here aj are columns:

aj =

a1j

...
amj

 .

This suggests we think of the columns as vectors, which we will very often do. We
will write A ∈ Cm×n to say that A is an m × n matrix with complex entries and
A ∈ Rm×n if the entries are real.

How do we go between T and the matrix A that represents it? The easiest way
is to see what T does to the standard basis. As T (ej) is a vector in Cm we can
expand it in standard basis vectors ei of Cm as:

T (ej) = ai =
m∑

i=1

aijei

but that is just

T (ej) =

a11 · · · a1n

...
. . .

...
am1 · · · amn




0
...
1
...
0


Where this is standard matrix multiplication (see below). Notice that the ith
column of A just the image of ei. By linearity then for arbitrary v =

∑n
j=1 vjej

one has

T (v) =
m∑

i=1

n∑
j=1

aijvjei

That is

T (v) =

a11 · · · a1n

...
. . .

...
am1 · · · amn




v1

...
vi

...
vm
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More compactly one can write:

T (v) =
[
a1 | · · · | an

]


v1

...
vi

...
vm


= v1a1 + . . . + vnan

here the aj = T (ej) are the columns of the matrix.
As with vectors we will usually just talk directly about a m × n matrix but

just as with should always remember that this is representing some sort of linear
transformation.

3. Algebra of matrices

Recall that we can add matrices, multiply them by a scalar and multiply a
m×n matrix on the left by a n×k matrix. Addition and multiplication by a scalar
are unambiguous. But in case you’re a little rusty: Set

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 , B =

 b11 · · · b1n

...
. . .

...
bm1 · · · bmn

 .

Then

A + B =

a11 · · · a1n

...
. . .

...
am1 · · · amn

+

 b11 · · · b1n

...
. . .

...
bm1 · · · bmn

 =

 c11 · · · c1n

...
. . .

...
cm1 · · · cmn


where cij = aij + bij . If λ ∈ C then

λA = Aλ =

λa11 · · · λa1n

...
. . .

...
λam1 · · · λamn


Slightly more complicated is matrix multiplication: Let B now be

B =

b11 · · · b1k

...
. . .

...
bn1 · · · bnk


a11 · · · a1n

...
. . .

...
am1 · · · amn


b11 · · · b1k

...
. . .

...
bn1 · · · bnk

 =

 a11b11 + . . . + a1nbn1 · · · a11b1k + . . . + a1nbnk

...
. . .

...
am1b11 + . . . + amnbn1 · · · am1b1k + . . . + amnbnk


or more compactly

AB =
[
Ab1 | · · · |Abk

]
here bj are the columns of B. Notice that this (perhaps mysterious) formula for
matrix multiplication comes from looking at the linear map that arises from the
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composition of two linear maps. Notice also that if we let C = AB and then expan-
ing things out we see that the columns of C can be expressed as linear combinations
of the columns of B.

Most of the usual algebraic rules apply except that matrix multiplication is not
commutative. Just to list them, let A,B ∈ Cm×n, C,D ∈ Cn×k, E ∈ Ck×l, λ ∈ C.
Then

A + B = B + A

λA = Aλ

λ(A + B) = λA + λB

A(λC + D) = λAC + BD

(A + B)C = AC + BC

(AC)D = A(CD)

Finally, we recall some important matrices. The first is the zero matrix. This
is the matrix in each Cm×n which has all zero entries and which we denote by
0. This corresponds to the linear transformation that sends everything to 0. If
A ∈ Cm×n, B ∈ Cl×m and C ∈ Cn×k and λ ∈ C then

A + 0 = 0 + A = A

λ0 = 0λ = 0
B0 = 0 = 0C.

We also introduce the the identity matrix I ∈ Cm×m (which we will also denote
by Id). This is the matrix

I =
[
e1| · · · |ei| · · · |en

]
whose columns are the standard basis. This matrix corresponds to the transforma-
tion that preserves all vectors. For B ∈ Cl×m and C ∈ Cm×k we have

BI = B

IC = C





CHAPTER 3

Second Lecture

In this lecture we review some of the properties of complex numbers.

1. Complex Numbers

Let us look at the following equation:

(1.1) x2 + 1 = 0

Naively x =
√
−1 would seem to be a solution. However, for any real xR x2 +1 ≥ 1

so this equation can never be solved over the reals. One of the great realizations
in mathematics was that in fact there is a solution if we just expand our concept
of numbers. Indeed, we can introduce an “imaginary” number I. This is not a
real number and is just a symbol. However, by pretending it has all the algebraic
properties of a usual number along with satisfying I2 = −1, will lead to a consistent
theory. Formally doing so will allow us to say (up to a sign) I =

√
−1.

In practice what this means is that we should be able to mulitply I by any
real number a to get a new “imaginary” number Ia. The set of all such numbers is
usually refered to as the set of (purely) “imaginary” numbers and is denoted IR (it
is more standard to use i but I want to avoid confusion with indices). We can also
add real and complex numbers to get new numbers that (usually) are neither real
nor complex that is let a, b ∈ R and then z = a + Ib is (for a, b 6= 0) neither real
nor imaginary. We denote the set of all such numbers by C and call them complex
numbers.

Since we seek an algebraically consistent set of numbers, we must be a little
careful how we define various algebraic operations. To add complex numbers we
have:

(a + Ib) + (c + Id) = (a + c) + I(b + d)

and to multiply we have

(a + Ib)(c + Id) = (a + Ib)c + (a + Ib)Ib = ac− bd + I(ad + bc).

One important operation that is new is complex conjugation. The idea here is to
take a complex number z = a + ib and associate its complex conjugate z̄ = a− ib.
The reason we do this is then that zz̄ = a2 + b2 is then always real (and non-
negative). Notice that if z = a + Ib then

a = <z =
z + z̄

2
and

b = =z =
z − z̄

2I
.

11



12 3. SECOND LECTURE

The fact that zz̄ is a non-negative real number makes it tempting to think of
it as a length. This we do and define the modulus of the complex number z to be

|z| =
√

zz̄.

Notice if z = a + Ib for a, b ∈ R then |z| =
√

a2 + b2. It is straightforward to see
that z = 0 if and only if |z| = 0.

The complex conjugate also gives an unambiguous way to to divide a complex
number by a non-zero complex number. Indeed,

z1

z2
=

z1z̄2

|z2|2
.

The right hand side consists of multiplication of two complex numbers and then
division by a real number all of which is straightforward.

We introduced the complex numbers in order to find roots to x2+1 = 0. Indeed,
we can now check that I and −I are the (only) two solutions of this equation. It
turns out that once one has I all polynomials (even with complex coefficients) have
a solution.

Theorem 1.1. (Fundamental Theorem of Algebra) Let

p(x) =
n∑

i=0

aix
i

be a polynomial of order n (can consider ai ∈ C) with an 6= 0. Then p(x) = 0 has
exactly n solutions (counting multiplicity) z1, . . . , zn in C. That is

p(x) = an(x− z1)(x− z2) · · · (x− zn)

2. Geometry of Complex Numbers

Real numbers are usual represented as points on a line. What is the right way
to think of representing complex numbers geometrically? Notice that z = a + Ib is
really just a pair of numbers (a, b). It can also be thought of as a vector:[

a
b

]
.

That is the complex number z can be represented as a 2-dimensional real vector.
Notice complex addition is then the same as vector addition, However, complex
numbers can be multiplied and there is no clear way to interpret this for vectors.

This graphical representation gives another way to describe a complex number
z = a + Ib. Namely, we can associate an angle θ and a radius r ≥ 0 to z so that
z = r cos θ + i sin θ. Explictily, r = |z| =

√
a2 + b2 and tan θ = b/a. The number θ

is called the argument of z and is defined only up to 2π.
This representation is particlurly useful when combined with the imporant fact

know as Euler’s formula (see below). For t ∈ R one has:

eIt = cos t + I sin t

More generally, one has that

(2.1) e(µ+Iν)t = eµt(cos(νt) + I sin(νt))

One way to justify this formual is to note that it ensures that
d

dt
eλt = λeλt.
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even when λ ∈ C.

3. Linear Algebra of Complex Numbers

As we we say we can think of a complex number z = a + Ib as a real vector

v =
[
a
b

]
We then have 1 corresponding to e1 and I corresponding to e2. Where e1, e2 is the
standard basis of R2.

It turns out that many of the natural operations on z as a complex number can
be interpreted as a linear transformation on v. We will use this to illustrate some
ideas from last time. Lets consider the map z → z̄ that is let C be the function so
that C(z) = z̄. On vectors this is the map:

C :
[
a
b

]
→
[

a
−b

]
One checks that [

a
−b

]
=
[
1 0
0 −1

] [
a
b

]
and so C yields a linear trasformation on R2 with matrix[

1 0
0 −1

]
Notice if we apply complex conjugation twice we get back where we started. This
corresonds to the fact that the square of the associated matrix is the identity.

Fix a complex number w = c + Id and consider the function Mw(z) = wz. As
vectors this yields the map

Mw :
[
a
b

]
→
[
ac− bd
ad + bc

]
We can again check that [

ac− bd
ad + bc

]
=
[
c −d
d c

] [
a
b

]
And hence Mw can be thought of a linear map on R2×2 with associated matrix:[

c −d
d c

]
The rules of complex multiplication imply that Mw1+w2 = Mw1 + Mw2 . In par-
ticular, if A,A1 and A2 are the matrices in R2× corresponding to Mw1+w2 , Mw1

and Mw2 (respectively) then one can verify that A = A1 + A2. Similarly, one has
Mw1(Mw2(z)) = Mw1w2(z) and so if A,A1 and A2 are the matrices in R2× corre-
sponding to Mw1w2 , Mw1 and Mw2 then one checks that A = A1A2. An important
consequence is then that we can encode a complex number z = a + Ib as a 2 × 2
real matrix and all the complex algbra directly corresponds to matrix algebra.

Now consider Euler’s formula for w = c + Id. That is write w = reiθ with
r ≥ 0 and θ ∈ [0, 2π). As a consequence Mw(z) = Mr(MeIθ (z)) = MeIθ (Mr(z)) In
particular [

c −d
d c

]
=
[
cos θ − sin θ
sin θ cos θ

] [
r 0
0 r

]
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Notice we we’ve broken our matrix into a simple diagonal matrix and a matrix
that is also very simple (it is orthogonal). We will generalize this sort factoriztion
for arbitrary matrices (where the diagonal will become upper triangular). This is
called the QR factorization and is at the heart of all sorts of applications of linear
algebra.

4. Functions of a complex variable: NIC

The algebraic properties of complex numbers allow one to define polynomial
functions of a complex variable. That is for a polynomial

p(x) =
n∑

i=0

aix
i

it is clear what p(z) means for z = a + Ib a complex number. For more general
functions the same result can be accomplished by using a taylor series expansion
(when one exists). For instance if a function f has a taylor series expansion

f(x) =
∞∑

i=0

aix
i

on for |x| < R (here R is the radius of convergence). Then the function f makes
sense at complex values z so that |z| < R by setting

f(z) :=
∞∑

i=0

aiz
i.

One has to of course check this sum converges in an appropriate sense, but that is
beyond the scope of these notes.

The point is that this gives a rigorous justification for the Euler formula.
Namely, the Taylor series expansion for et is

et =
∞∑

n=0

tn

n!

which has infinite radius of convergence. We then have

eIt =
∞∑

n=0

(It)n

n!

But I4k = 1, I4k+1 = I, I4k+2 = −1 and I4k+3 = −I so this gives

eIt =
∞∑

n=0

(−1)nt2n

(2n)!
+ I

∞∑
n=1

(−1)(n− 1)t2n−1

(2n− 1)!

But the Taylor series expansions of of cos t and sin t are

cos t =
∞∑

n=0

(−1)nt2n

(2n)!
sin t =

∞∑
n=1

(−1)(n− 1)t2n−1

(2n− 1)!

So
eIt = cos t + I sin t

as claimed. The formula for a general complex number can be verified in a similar
manner.



CHAPTER 4

Third Lecture

We recall the definitions of basic linear algebra concepts such as spans of vectors,
linear independence, basis vectos and so on. We will also translate these concepts
into corresponding properties of matrices.

1. Basic Linear Algebra

Suppose we have a set of vectors v1, · · · ,vk in Cn. One very natural question
to ask is can we write every vector as a linear combination of the vj? If yes, one
further asks “how many” different ways are there to express the same vector in
terms of thevj . If no, which vectors fail to be so expressable and how many are
there.

To start making this precise we define the span of a set of vectors {vj} to be

the set of all vectors. Span(v1, . . . ,vk) =
{
w : w =

∑
j cjvj

}
. This is the largest

set of vectors we form from the set {vj} by only using linear algebra operations.
We say the vj are linearly independent if

c1v1 + . . . + ckvk = 0 ⇐⇒ 0 = c1 = . . . = ck

Otherwise we say the vj are linearly dependent.
A simple example: The vectors

v1 =

1
1
0

 ,v2 =

 1
−1
0


are linearly independent in R3. Their span is the plane z = 0. To show this
rigrously note that:

av1 + bv2 = (a + b)e1 + (a− b)e2 =

a + b
a− b

0


For this to equal 0 need a + b = 0 and a− b = 0. That is a = 0 and b = 0. Hence
the vectors are linearly independent. Checking the spanning property is similar.
Notice all this comes down to is solving ansystem of equations.

Another example: The vectors

v1 =

2
1
1

 ,v2 =

1
0
0

 ,v3 =

3
3
3


are not linearly independent. Indeed, v3 = 3v1 − 3v2. However any pair of the
vectors is linearly independent the span of all three vectors is a plane in R3.

15
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A final example: In general any collection of standard basis vectors ej1 , . . . , ejk

in Cn is linearly independent if k = n then the set spans Cn.
How do we determine if a given set of vectors spans some set? Is linearly

independent? As we sketched in the example above this is really a question about
systems of linear equations. Consequently, the best method to do this is to turn
the question into an equivalent question about matrices. We will then answer the
corresponding question for matrices. This will also give additional information. So
how do we turn this into a question about matrices? The point is that taking the
span span looks like taking lots of matrix multipications. That is let V be the n×k
matrix:

V =
(
v1 | · · · | vk

)
Then let

c =

c1

...
ck


then

V c =
k∑

j=1

cjvj

I.e. w is in the span of the vj if and only if there is a vector in c ∈ Ck so that
w = V c. We denote by Range(V ) or R(V ) the precisely the latter such set. That
is let A ∈ Cm×n be a matrix we define the range of A, Range(A) = R(A) ⊂ Cm by

R(A) = {w ∈ Cm : w = Ac for some c ∈ Cn}
We also refer to R(A) this as the Image of A or the Column space of A. Notice the
latter makes sense as R(A) is the span of the columns of A.

Similarly, we can use V to see when the vj are linearly independent. Again we
have the vj linearly independent if

0 =
∑

j

cjvj = V c ⇐⇒ c = 0

That is {vj} is linearly independent if and only if the only vectors that A multiplies
against to give 0 is the zero vector. For A ∈ Cm×n, we define Null(A) = N(A) ⊂
Cn, the null space of A, to be the set of vectors

N(A) = {v ∈ Cn : Av = 0}
This is sometimes refered to as the kernel of A. Hence we see that the vj are
linearly indepependent when and only when N(V ) = {0}.

Having transformed the problem to a question about matrices we need to dis-
cuss how to use this to actually solve the problem. The main way to do this is to
use Gaussian elimination. We’ll review this algorithm next lecture.

2. Spaces of Vectors and Basis Vectors

In order to make some of the preceding clearer, we introduce some further
mathematical definitions as well as state some important facts. The later will be
proved in a couple of lectures after we have some important tools.

For a matrix A ∈ Cm×n we have defined the range of A, R(A) as a subset of
Cm and the null space, N(A) as a subset of Cm. These sets are well behaved with
respect to the operations of linear algebra. More precisely, we say a set of vectors
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E ⊂ Cn is a vector space (or vector sub-space) if for any pair of vectors v,w ∈ E
and any scalar λ ∈ C one has λv ∈ E and v + w ∈ E. That is E is closed uner the
operations of linear algebra. Notice by taking λ = 0 we must alwasy have 0 ∈ E.
Note that Cn is a vector space as is {0} the set consisting only of the zero vector
0 ∈ Cn.

Notice that the span of any set of vectors vVi ∈ Cn, 1 ≤ i ≤ k is a vector
space. To see this let v,w ∈ Span(v1, . . . ,vk) then v =

∑k
i=1 civi,w =

∑k
i=1 divi.

Then using the algebraic properties of vectors one has v + w =
∑k

i=1(ci + di)vi

which is then clearly in the span. A similar argument shows λv is in the span. In
particular, as the range space of A is the span of the columns of A, R(A) ⊂ Cm

is a vector space. The null space of A, N(A) ⊂ Cn is also a vector space. To see
this let v,w ∈ N(A). Then Av = Aw = 0. Now A(v + w) = Av + Aw = 0 and
A(λv) = λ(Av) = λ0 = 0, hence v + w ∈ N(A) and λv ∈ N(A).

For a given vector space E we say that a set of vectors v1, . . . ,vk ∈ E are a
basis of E if E = Span(v1, . . . ,vk) and the set {v1, . . . ,vk} is linearly independent.
An easy example is that that the standard basis e1, . . . , en is a basis of Cn. One
important consequence of {v1, . . . ,vk} being a basis of E ⊂ Cn is that any vector
v ∈ E can be expressed uniquely in terms of the vi that is

v =
k∑

i=1

civi = V c

where here V ∈ Cn×k is the matrix with columns the vi and c ∈ Ck are the
coefficients of v with respect to the basis v1, . . . ,vk. It is a simple excercise to see
that N(V ) = {0} and R(A) = E. In particular, if we want to find the coefficients
c for a given vector v we must solve the equation:

V c = v.

Which consists of n equations in k unknowns.





CHAPTER 5

Fourth Lecture

In this lecture we reviewed Gaussian elimination. We focused on the difference
between row operations and column operations and how those could be used to
determine different information about (respectively) the null space of a matrix and
the column space.

1. Elementary Row and Column Operations

The basic tool we will use are a certain set of operations on the rows and
columns of a matrix. These will preserve important features of the matrix while
also simplifying the matrix.

Fix a matrix A ∈ Cm×n. We’ve already seen how to write A in terms of its
columns:

A =
(
a1 | . . . | an

)
here aj is vector in Cm or a m× 1 matrix. it is also helpful to write it in terms of
its rows

A =


c1

−
...
−
cm


where here the cj is a 1× n matrix (not a vector!).

Starting with A we define an elementary column operation to be one of the
following operations: a) Swapping two columns of A, b) scaling the first column by
a non-zero scaler and c) adding the second column to the first column. In general
we will be iteratively applying a sequence such operations to A.

More precisely, we take and produce a new m × n matrix A′ by doing one of
the preceding operations as follows:

A =
(
a1 | . . . | ai | . . . | aj | . . . | an

)
under the swapping operation, a), goes to

A′ =
(
a1 | . . . | aj | . . . | ai | . . . | an

)
.

Here we are free to choose any 1 ≤ i < j ≤ n we like. Ander the scaling operation,
b), one has A going to

A′ =
(
λa1 | . . . | ai | . . . | aj | . . . | an

)
where here λ 6= 0 is a scaler in C. Finally, under the addition operation, c), A goes
to

A′ =
(
a1 + a2 |a2| . . . | ai | . . . | aj | . . . | an

)
.

19
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Notice that by combining the swapping operation with the scaling operation, one
obtains an operation given by scaling any column by a non-zero scalar. Similarly, by
combining the swapping operation with the addition operation one gets an operation
wherein any column may be added to any other. This larger set of operations is
often refered to as elementary column operations.

The nice feature of elementary column operations is that they preserve the
range space of a matrix.

Theorem 1.1. Let A ∈ Cm×n. If A′ is obtained from A by a (finite) sequence
of elementary column operations then R(A) = R(A′)

Remark 1.2. In general N(A) 6= N(A′), though it is true that dimN(A) =
dimN(A′).

Proof. We verify this only when A′ is obtained from A by one elementary
column operation. The theorem then follows by induction. Lets first verify that
R(A′) = R(A) when A′ is obtained from A by swapping the ith and jth column.
Let v ∈ R(A) then there is a w ∈ Cn so that v = Aw. We may write w =
w1e1 + · · · + wiei + · · · + wjej + · · · + wnen where ek is the kth standard basis
vector. Now let A′ be obtained from A by swapping the ith and jth columns.
If we set w′ = w − wiei − wjej + wjei + wiej then one verifies that A′w′ = v.
Hence R(A) ⊂ R(A′). However, reversing the argument works just as well so
R(A) = R(A′).

Now suppose that A′ is obtained by A by scaling by λ 6= 0 the first column
of A. If v ∈ R(A) then v = Aw where w =

∑n
i=1 wiei then if we set w′ =

w1
λ e1 +

∑n
i=2 wiei then A′w′ = Aw = v. Hence in this case also R(A) ⊂ R(A′).

Again the argument is reversible so R(A) = R(A′).
Finally, suppose A′ is obtained from A by adding the second column to the

first. If v ∈ R(A) then v = Aw where w =
∑n

i=1 wiei. Now set w′ = w1e1 +(w2−
w1)e2 +

∑n
i=3 wiei. Then one has A′w′ = Aw = v so R(A) ⊂ R(A′). Again the

argument is reversible so R(A) = R(A′). �

In a corresponding way we may define the elementary row operations. Roughly
speaking, an elementary row operation is one of the following operations: a) swap-
ping two rows, b) scaling the first row by a non-zero scalar, or c) adding the second
row to the first row. More precisely, for a matrix A a new matrix A′ is obtained by
an elementary row operation applied from A if it is given by one of the following
formulas:

A =



c1

...
ci

...
cj

...
cm


, A′ =



c1

...
cj

...
ci

...
cm


, A′ =



λc1

...
ci

...
cj

...
cm


, A′ =



c1 + c2

...
ci

...
cj

...
cm


Unlike the elementary column operations, the elementary row operations pre-

serve the null space, though they change the column space.
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Theorem 1.3. Let A ∈ Cm×n be a matrix. If A′ is obtained from A by a
(finite) sequence of elementary row operations then N(A) = N(A′).

Remark 1.4. In general R(A) 6= R(A′), though it is true that dimR(A) =
dimR(A′). We will prove this later.

2. Reduced Echelon Form and Gaussian elimination

Elementary row operations and elementary column operations can be applied
to a matrix A to produce new matrices A′ and A′′ that are “simpler” in a certain
sense. In order to make this precise, we need a notion of what a “simple” matrix
should be.

We make the following defintions:

Definition 2.1. Let A ∈ Cm×n and write

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn


we say A is in row reduced echelon form (rref) if

(1) A is upper triangular, i.e. if aij = 0 when i > j.
(2) The first non-zero entry of each row of A is 1 (note some rows may be all

zeros). This entry is called a pivot.
(3) The only non-zero entry in a column containing a pivot is the pivot entry.

Definition 2.2. Let A ∈ Cm×n and write

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn


we say A is in column reduced echelon form (cref) if

(1) A is lower triangular, i.e. if aij = 0 when i < j.
(2) The first non-zero entry of each column of A is 1 (note some columns may

be all zeros). This entry is called a pivot.
(3) The only non-zero entry in a row containing a pivot is the pivot entry.

The point about the echelon forms is that (as well discuss below) they are easier
to extract information about the range and null space from. The point is that that
one can always obtain a matrix A′ which is in rref from A by elementary row
operations. I won’t discuss the details the algorithm to do this – namely Gaussian
elimination – as you learned it in Math 51. In a similar manner, and by essentially
the same algorithm for any matrix A one can obtain a matrix A′ from A by column
operations and so that A′ is in cref.

The existence of such the Gaussian elimination algorithm is then a proof of the
following theorems which we will use in this class.

Theorem 2.3. For any matrix A ∈ Cm×n there is a unique matrix A′ obtained
by a finite number of elementary row operations from A so that A′ is in rref. We
write A′ = rref(A).

Similarly, there is a unique matrix A′′ obtained by a finite number of elementary
column operations from A and so that A′′ is in cref. We write A′′ = cref(A).
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3. Pivots

The pivots of cref(A) and rref(A) allow one to determine (respectively) the
range or the null space of A more easily. For instance one can check that the set
of columns of cref(A) containing a pivot forms a basis of R(cref(A)) = R(A).
Thus, dimR(A) is the number of pivots in cref(A). A more involved argument
shows that, in rref(A) looking at the null space, non-pivot columns correspond
to “free variables” while pivot columns correspond to“pivot variables” that are
determined by the free variables. In particular, one expects the dimension of the
N(rref(A)) = N(A) to be the number of “free variables”.

4. Examples

I’ll illustrate some of the preceding with an example. Let

A =

2 3 0
0 1 1
1 2 1


column operation steps2 3 1

0 1 1
1 2 1

→

 1 0 0
0 1 1

1/2 1/2 1/2

→

 1 0 0
0 1 0

1/2 −1/2 0


so A has rank 2 and the range is spanned by the vectors 1

0
1/2

 ,

 0
1

−1/2


Notice that A′ = cref(A) has nullity 1 and null space spanned by e2 which is NOT
in the null space of A. Row operations give:2 3 1

0 1 1
1 2 1

→

1 3/2 1/2
0 1 1
0 1/2 1/2

→

1 0 −1
0 1 1
0 0 0


It is straightforward to see that for A′ = rref(A), Null(A′) is spanned by

 1
−1
1


and hence so is Null(A). In particular as expected the nullity is 1. I leave it to you
to see that theR(A) is not the same as R(A′).

5. Column and row operations as matrix multiplications

We claim (we will come back to this later in the course that there are n × n
(non-singular) matrices Sij , Mλ and C (corresponding to elementary row column
operations a), b) and c) respectively) so that multiplication of A on the right by
the matrix produces A′, i.e. A′ = AC. Where A′ is obtained from A by one of the
elementary column operations.

Similarly, there are m×m (non-singular) matrices so that multiplication of A
on the left by these matrices yields the elementary row operations.



CHAPTER 6

Fifth Lecture

We present some (selected) proofs of important linear algebra facts.

Theorem 0.1. Every vector space E ⊂ Cn admits a basis.

Proof. This is such a fundamental result that it can be a bit difficult to prove
and so we don’t do it here. �

Lemma 0.2. If A is a m×n matrix and m < n (i.e. A is short and wide) then
there is a non-zero vector v ∈ Cn so Av = 0. (i.e. N(A) is non-trivial).

Proof. Let A′ = rref(A). We verified last time that N(A′) = N(A), so we
just need to find a non-zero vector in N(A′). Write

A′ =
[
a′1| · · · |a′n

]
so a′i are the columns of A′. Since there is only one pivot (at most) in each column
and row) and m < n there must be a column a′j0 without a pivot. Write

ai0 =

a1j0
...

amj0


Let

v =

v1

...
vn


where

vi =


−aij0 if a′i has a pivot and i < j0

0 if a′i has no pivot and i < j0
1 if i = j0
0 if i > j0

Notice that v 6= 0 and A′v = 0 hence v ∈ N(A). �

Theorem 0.3. If v1, . . . ,vk is a basis of E ⊂ Cn and w1, . . .wl is also a basis
for E then k = l.

Proof. We argue by contradiction. Up to a relabelling we may assume that
k > l. The fact that the wi are a basis means there are cij so that vj =

∑k
i=1 cijwi.

Now let V be the n × k matrix whose columns are vj and W be the n × l matrix
whose columns are the wi. Let C be the l × k matrix with entries cij . Then we
have

V = WC

23
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Now C is a l × k matrix and l < k so by Lemma 0.2 there is a non-trival x so
that Cx = 0 but then V x = 0 but this implies the columns of V (i.e. the vjs) are
linearly dependent. A contradiction. �

Lemma 0.4. Let v1, . . . ,vl be linearly independent vectors in E. Then dim(E) ≥
l.

Proof. This is very similar to the previous argument. We argue by contra-
diction. Suppose that dim(E) = k < l. By Theorem 0.1, there is a basis of E and
by Theorem 0.3 we may write it as w1, . . . ,wk. As before writing the vj in terms
of the wi yields a contradiction to Lemma 0.2 Hence dim(E) = k ≥ l. �

Theorem 0.5. Any set of linearly independent vectors v1, . . . ,vl in a vector
space E can be extended to a basis v1, . . . ,vk where k = dim(E) ≥ l.

Proof. Set m = k− l i.e. the difference between number of linear inependent
vectors v we start with and the number we want to end up with. By Lemma
0.4 m ≥ 0. By Theorems 0.1 and 0.3 and Lemma 0.4 when m = 0 then the
vectors we started with form a basis. To really see this just need to verify that
v1, . . . ,vl generate E. To that end pick any w ∈ E. If w 6∈ Span {v1, . . . ,vl} then
{w, . . . ,v1, . . . ,vl} is linearly independent, then Lemma 4 implies dimE ≥ l + 1
contradiction m = 0.

We now prove the theorem by induction on m. That is fix m ≥ 0: suppose that
we know that for any vector space E′ and lin indep vectors a1, . . . ,al′ in F with
dim(E′) = k′ satisfies k′ − l′ = m then a1, . . . ,al′ can be extended to a basis of F
a1, . . . ,ak′ . (i.e. we added m new vectors) We want to conclude that for any other
vector space E′′ with lin indep vectors b1, . . . ,bl′′ so that dim(E′′) = k′′ satisfies
k′′− l′′ = m+1 then b1 . . . ,bl′′ extends to a basis b1, . . . ,bk′′ (i.e. we added m+1
new vectors). We see this as follows: By Theorem ?? the b1, . . . ,bl′ cannot span
E′′ as otherwise they would form a basis but m + 1 > 0. Hence pick any vector w
in E′′ not in the span of the b1, . . . ,bl′ . Now if set bl′′+1 = w then the new set
of vectors b1, . . . ,bl′′ ,bl′′+1 is a) Linearly independent in F ′′ and hence together
with F ′′ satisfies the induction hypotheses.

This proves the theorem. �

Remark 0.6. If you are having problems with this think about the case m = 1
and m = 2.

Some applications to matrices.

Theorem 0.7. Let A be a m ×m matrix . Then A is full rank if and only if
the columns of A form a basis of Cm

Proof. ⇒. We need to check that the columns are a basis that is the generate
and are linearly independent. We know that A has full rank implies the dimension of
R(A) is n which implies by Theorems 0.1 and 0.3 that R(A) has basis w1, . . . ,wm ∈
Cm. As the wis are linearly indpendet, by Theorem 5 we can extend w1, . . . ,wm to
a basis of Cm but by Theorem 0.3 this extension must be trival hence R(A) = Cm

and since the columns spance R(A) they span Cn. We check that the columns
are linearly indendent as follows: if they failed to be linearly independent then one
could remove one of the columns and have m−1 vectors spanning Cn. In particular,
there would be a m × (m − 1) matrix A′ with R(A′) = Cm. In particular, if ei is
the standard basis of Cm we can find ci ∈ Cm−1 so that ei = A′ci. Let C be the
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m− 1×m matrix with columns ci then Id = A′C, but C is short and wide and so
by Lemma 2 there is a non-trival x ∈ Cm so that Cx = 0. Since Idx = x 6= 0 this
is a contradiction.

⇐. Since the columns form a basis their span has dimension m. Hence
dimR(A) = n and hence A has full rank. �

Corollary 0.8. If A is an m ×m matrix with linearly independent columns
then A has full rank.

Proof. As the columns are linearly independent and there are m of them,
they must span Cm hence they are a basis. �





CHAPTER 7

Sixth Lecture

In this lecture we discussed how to interpret matrices as systems of linear
equations. We also discussed non-singular matrices.

1. Systems of Linear Equations

We disucss one of the classic applications of linear algebra. Namely solving
systems of linear equations. We’ve already seen these sorts of questions in other
guises.

The basic set up is let A ∈ Cm×n be a m × n matrix. We can interpret this
matrix as a system of m linear equations in n unknowns by letting x ∈ Cn be a
vector of variables and b ∈ Cm be fixed and try and look for solutions to:

Ax = b

Two important and natural questions immediately arise. Is there always a solution?
And if so is it unique? In general both anwers are false so it is a good idea to be
able to quantify them. Of course one would also like to find a solution if it exists,
but that is a more computational question.

It follows from the definitions pretty much directly that our system has a solu-
tion when and only when b ∈ R(A). On the other hand if x = v is a solution and
v′ ∈ N(A) then it is also clear x = v +v′ is also a solution. Similarly, if x = v and
xw are two solutions then v −w ∈ N(A). In other words the null space precisely
characterizes how solutions fail to be unique while the range characterizes which
inputs lead to solutions.

We point out that thinking about the A as a linear transformation leads to
some important (and equivalent) notions. Namely, that of surjective and injective
maps. Consider the linear map Â associated to A from Cn to Cm given by

Â : Cn → Cm

x 7→ Ax

We say that Â is surjective (or onto) precisely when for all b ∈ Cm there is an
a ∈ Cn so Â(a) = b that is one can always solve Ax = b for any b. We say Â is
injective (or 1-1) when Â(x) = Â(y) implies that x = y that is there is at most one
solution to Ax = b (there may be none).

We note the following equivalent properties for A ∈ Cm×n: A is surjective as
a linear map, Ax = b always has a solution, R(A) = Cm, the columns of A span
Cm. Similiarly: A is injective: Ax = b has at most one solution, N(A) = {0}, the
columns of A are linearly independent.

27
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2. Non-Singular Matrices

We won’t at present discuss further the mechanics of solving systems. The
standard approach to this is Gaussian elimination a topic that should have been
covered in great depth in Math 51. Rather we will specialize to a very special case.
Namely when A is surjective and injective, i.e. R(A) = Cn and N(A) = Cm.

One easy to see fact about A in this case is that A is m×m i.e. square. This
follows as each column is an m vector and there are n of them in m × n matrix.
Injective implies the columns of A are linearly-independent while surjective implies
they span Cn. That is they form a basis of Cm and so m = n. We call such a
matrix A Non-Singular. A m×m matrix that is not non-singular is called singular.
Notice that by Theorem 0.7 and Corollary 0.8 any m ×m matrix is non-singular
provided that either columns linearly-independent or span

Let A be a m×m non-singular matrix. One of the most imporant facts about
such A is that there exists another matrix which we denote by A−1 so that AA−1 =
I. We see this as follows: Let ai be the unique solution to Ax = ei. Then one has:

A−1 =
[
a1 | . . . | am

]
Then we check that AA−1 = I. A−1 is the inverse and so also say that A is
invertible

We list some useful facts and indicate an rough idea of the proofs.
• A−1 is non-singular. To see this note that N(A−1) = {0}. Indeed, if

x ∈ N(A−1) then x = AA−1x = A0 = 0. Hence, A−1 is non-singular.
• A−1A = I. To see this, we note that A−1 = A−1I = A−1AA−1. Hence,

I = A−1(A−1)−1 = A−1AA−1(A−1)−1 = A−1A. Here (A−1)−1 exists as
A−1 is non-singular.

• If BA = Id or AB = Id then A is non-singular and B = A−1. To see this
multiply (on the right or left) by A−1.

• (A−1)−1 = A.
• If A, B non-singular then so is AB and (AB)−1 = B−1A−1. Conversely,

if AB is non-singular then both A and B are.
We are going to see non-singular matrices again and again. This is because and

this is really important the columns of a non-singular matrix form a basis and a
basis gives a non-singular matrix by taking them as columns! More precisely, given
a basis ai of Cm we can write some vector

b =

 b1

...
bm

 =
m∑

i=1

biei = Ib

as

b =
m∑

i=1

ciai = Ac

Here A is m×m matrix with colums ai. The ci are the coefficients of b in the basis
ai. We say that the cis (equvialently the c) are the coefficients of b with respect to
the basis {ai}

The point is the matrix A tells us how to determine the coefficients of b with
respect to the standard basis in terms of the coefficients c. On the other hand,
multiplying by A−1 we have A−1b = c in other words A−1 tells us how to write



3. HOW TO TELL IF A IS NON-SINGULAR 29

the ci in terms of the bi. In other words how to write the coefficients of b in terms
of the basis a in terms of the coefficients of the standard basis. For this reason
non-singular matrices are sometimes said to give a change of basis.

Why is changing basis good? Well some problems are easier to understand
in a given basis. More importantly a matrix X often has a natural basis (usually
different form the standard basis) on which it behaves particularly simple. For
example, let us write

v1 =

1
1
0

 ,v2 =

0
2
0

 ,v3 =

−1
0
1


We claim that the three vectors form a basis of C3. Now let us try and write

w =
[
2, 3, 1

]
in terms of this basis. That is find c1, c2, c3 so that w = c1v1 + c2v2 + c3v3 This
amounts to looking at 2

3
1

 =

1 0 −1
1 2 0
0 0 1

c1

c2

c3


Then we have 1 0 −1

1 2 0
0 0 1

−1 2
3
1

 =

c1

c2

c3


computing out  1 0 1

−1/2 1/2 −1/2
0 0 1

2
3
1

 =

3
0
1

 =

c1

c2

c3


3. How to tell if A is non-singular

There are a number of ways to recognize that an m×m matrix A is non-singular
we won’t discuss all of them. When A ∈ Cm×m then A is nonsingular is equivalent
to...

• N(A) = {0} equivalently the columns of A are linearly independent equiv-
alently for all b, Ax = b has at most one solution.

• R(A) = Cm equivalently the columns span Cm equivalently for all b
Ax = b has a solution.

• There is a m×m matrix B so AB = I or BA = I
• det(A) 6= 0

The last condition is that the determinant of the matrix. We won’t discuss this
much further as it is a concept that while useful theoretically, almost never gets
used in the algorithms we will study. As I consequence, I’ll defer defining the
determinant till we use it (if ever).

Lets see another example. Lets say I tell you that v1,v2,v3 is a basis of C3.
Then I define w1 = v1 − 2v2 + v3, w2 = v2 − v3 and w3 = v1 + v3. How can
we determine if wis are a basis of C3? To answer this lets rewrite this as a matrix
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problem. [
w1 |w2| w3

]
=
[
v1 |v2| v3

]  1 0 1
−2 1 0
1 −1 1


I.e. for each column multiplying by V replaces standard basis by basis vi. For wi

to be a basis W needs to be non-singular. V is non-singular so it is enougth that
the right hand side is non-singular. Row reducing shows that it is.

Now how do we write vi’s in terms of the wi’s?

[
w1 |w2| w3

]  1 0 1
−2 1 0
1 −1 1

−1

=
[
v1 |v2| v3

]



CHAPTER 8

Seventh Lecture and Eighth Lecture

In this lecture we introduced the hermitian inner product and adjoint. These
are generalizations to the complex settings of the dot product and transpose which
are defined for real vectors and matrices. This is an amalgamation of the seventh
and eigth lectures.

1. Notation

We remind our selves of some notation before preceding further
Let A ∈ Cm×n be a m×n matrix. We’ve often expressed A as a set of columns:

A =
[
a1| . . . |an

]
here ai is also a m× 1 matrix We can also write A in terms of its rows

A =

a′1
...

a′m


where a′j is a 1× n matrix. As we’ve seen multiplying A on the right by a vector

v =

v1

...
vn


is the same as getting a linear combination of the columns, that is

Av =
n∑

j=1

vjaj

In a similar manner multiplying A on left by a row q =
[
q1 . . . qm

]
gives a

linear combination of the rows:

qv =
m∑

i=1

qia
′
i ∈ C1×n

We then have rules for matrix multiplication if B ∈ Cn×k and

B =
[
b1| . . . |bk

]
then

AB =
[
Ab1| . . . |Abn

]
Similarly, if we write

B =

 b′1
...

b′m


31
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then

AB =

a′1B
...

a′mB


In either case this yields:

AB =

a′1b1 · · · a′1bk

... a′ibj

...
a′mb1 · · · a′mbk


2. Adjoints

We now introduce an important formal operation on matrices. Let

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 ∈ Cm×n, B =

b11 · · · b1m

...
. . .

...
bn1 · · · bnm

 ∈ Cn×m

We say that B is the hermitian conjugate or adjoint of A when and only when
bij = āji and write B = A∗. Another way to think about this is: Let v ∈ Cm be
the vector v = (v1, . . . , vm). we define v∗ = [v̄1, . . . , v̄m]. For a matrix A ∈ Cm×n

we write A =
[
a1| · · · |an

]
and define

A∗ =

a∗1
...

a∗n


When A ∈ Rm×n is a real matrix we have that āij = aij and so all are doing
when taking the adjoint is flipping. You’ve probaby see this before and called it
the transpose A>.

An important class of matrices are the hermitian and symmetric matrices. A
hermitian matrix is one so that A∗ = A. A symmetric matrix is just a hermitian
matrix that has real entries (and so A> = A). Notice any such matrix (in either
case) is square.

3. Inner Products

We may think of a vector v ∈ Cn as a n× 1 matrix. Hence we can write v∗ to
get a 1× n matrix. We define the innerproduct of two vectors v and w ∈ Cn as:

〈v,w〉 = v∗w

Notice that when the vectors have real entries (i.e. v,w ∈ Rn) this is just the
usual dot product. This suggests we use the inner product to define a notion of
“length” of a vector. That is set:

||v||2 =
√

v∗v ≥ 0.

We point out that v∗v ≥ 0 for any vector so the squareroot is okay. We included
complex conjugation precisely to achieve this. When v,w ∈ Rn we can really
geometrically think of ||v||2 as the length of v and v∗w = ||v||2||w||2 cos α where
α is the angle between v and w. For complex vectors this geometric interpretation
doesn’t make as much sense, but is still useful for intuition.
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Some useful properties (left as an exercise). Bilinearity of the innerproduct:

(v1 + v2)∗w = v∗1w + v∗2w

v∗(w1 + w2) = v∗w1 + v∗w2

(αv)∗(βw) = ᾱβv∗w

These all follow from properties of matrix multiplication. Note this implies ||λv||2 =
|λ|||v||2. The innerproduct satisfies the following inequality known as the Cauchy-
Schwarz inequality:

|v∗w| ≤ ||v||2||w||2.
with equality if and only if the v and w are collinear. The length also satisfies the
so called triangle inequality :

||v + w||2 ≤ ||v||2 + ||w||2.
Note that both of these are easily shown for real vectors and have nice geometric
intrepretations, but they also hold for complex vectors.

For general matrices A ∈ Cm×n and B ∈ Cn×k one has (AB)∗ = B∗A∗. In
particular if v ∈ Cm and w ∈ Cn then v∗(Aw) = (A∗v)∗w. That is

〈Av,w〉 = 〈v, A∗w〉
This last fact is really key and we will return to it soon.

4. Orthogonality

One useful thing to use the inner product for is to tell if two vectors are or-
thogonal. We say v and w are orthogonal if v∗w = 0. If the vectors are real then
this means geometrically that they are perpendicular. An example ei and ej are
orthogonal when i 6= j.

We say that two sets of vectors E and F (not neccesarily vector spaces) are
orthogonal if whenever v ∈ E and w ∈ F one has v∗w = 0. A set of non-zero
vectors S is orthogonal if for any v ∈ S,w ∈ S with v 6= w one has v∗w = 0. This
set is orthonormal if in addition ||v||2 = 1 for all v ∈ S. Examples include the
standard basis and the vectors

1/
√

2
[

I
−I

]
, 1/

√
2
[
1
1

]
∈ C2.

Probably the most important thing about orthogonality for our purposes is
that it is a simple condition that ensures linear independence.

Theorem 4.1. (2.1 in T-B) The vectors in an orthogonal set S are linearly
independent.

Proof. Suppose one has vi ∈ S (i = 1..l) that are linearly dependent. Then
we can write vk =

∑l
i=1 civi where ck = 0 and vk. Then v∗kvk = v∗k

∑l
i=1 civi =∑l

i=1 civ∗kvi by the bilinearity . The orthogonality says that the left hand side
equls ckv∗kvk = 0. However, this implies vk = 0 which is impossible. �

One consequence is that if S ⊂ Cm is an orthogonal set then S is a basis of
span(S). We refer to such a basis as an orthonormal basis if in addition for v ∈ S
||v||2 = 1. If S ⊂ Cm and there are m vectors in S then S is a basis of Cm. Note
by normalizing one can always go from an orthogonal set to an orthonormal set.
One good property of an orthonormal basis is that it is easy to find the coefficients
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of a vector with respect to the basis using the inner product. Namely, if v1, . . . ,vk

are an orthormal basis of E ⊂ Cm then We can write v ∈ Cm as

v =
k∑

i=1

〈vi,v〉v =
k∑

i=1

(v∗i v)v

i.e. the coefficients are v∗i v.

5. Unitary Matrices

We now introduce an important class of matrices that are related to what
we just discussed. The idea is that while a basis corresponds to a non-singular
matrix, an Orthonormal basis corresponds to a Unitary matrix. Since expanding
components in an orthonormal basis is easier than doing it for a generic basis, so
finding inverses for unitary matrices is easier than for non-singular matrices.

We say Q ∈ Cm×m is unitary if Q∗ = Q−1 (if Q ∈ Rm×m say is it is orthogonal).
That is if Q∗Q = QQ∗ = I. It straight forward to check that if Q =

[
q1 | . . . | qm

]
then Q∗ =

q∗1
...

q∗m

 so

Q∗Q =

q∗1q1 . . . q∗1qm

...
. . .

...
q∗mq1 . . . q∗mqm


So Q unitary if and only if the columns form an orthonormal basis. In particular
Q∗b gives the coefficients of b in the orthonormal basis given by the columns of
Q. Two important additional properties of unitary matrices are that they preserve
innerproduct and 2−norm i.e. (Qv)∗(Qw) = v∗Q∗Qw = vV ∗w. and So ||Qv||2 =
||v2||.

For real matrices this has the geometric interpretation that Q is given by a
rigid motion fixing the origin. For instance rotation about the origin or reflection
through any line (or plane etc) through the origin.

Example: we check that rotation is Unitary.

A =
[
cos θ − sin θ
sin θ cos θ

]
then A∗A = A>A = Id is a straight forward computation.



CHAPTER 9

Ninth and Tenth Lectures

In this Lecture I started to discuss complementary decompositions of vector
spaces as well as projectors.

1. Orthogonal Projections

One of the key uses of inner products is that they allow one to decompose
arbitrary vectors into orthogonal components. This often simplifies a problem sub-
stantially. We say this already when one has a basis but the idea is more general.

The basic idea: Let S = {v1, . . . ,vk} be an orthonormal set of vectors. For w
an arbitrary vector we have that v∗i w is a scalar. If we write

r = w − (v∗1w)v1 − (v∗2w)v2 − . . .− (v∗kw)vk

Then it is straight forward to check that r is orthogonal to S that is we can write:

w = r + (v∗1w)v1 + (v∗2w)v2 + . . . + (v∗kw)vk = r +
k∑

i=1

(viv∗i )w

so all the summand vectors are orthogonal. Note the second equality just uses the
fact that scalar multiplication can be commuted.

Notice that if the vi form a basis then r = 0. That is we have expressed w in
terms of the basis vi in a relatively painless manner. This is one of the real powers
of inner products and orthogonality.

I point out also that when I rewrote the expansion in terms of (viv∗i )w I
wasn’t doing much mathematically but the interpretation is important. The poin
this viv∗i is now a square matrix Pi that one can check preserves any vector λvi

(i.e. Pi(λvi) = λvi and has Null(Pi) the space of vectors orthogonal to vi. That
is Pi is the projection matrix onto vi. These are important special cases of a more
general type of matrix that will be important for us.

Notice that philosphically the two expansions are different. The first we view
w as coefficients v∗i w times the vi plus some left over term r while in the second
we view w as the sum of vectors (viv∗i )w given by projecting plus some left over
term r. projections

We come up with a more general concept of orthogonal projection if we let

P =
k∑

i=1

(viv∗i )

then w = Pw + r. Here P is m×m matrix with rank k. P gives projection onto
the span of the vi. For instance if k = 2 this is projection onto a plane. We point
out that P 2 = P and P ∗ = P . I.e. P is idempotent and hermitian. We will return
to this soon.
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2. Sums of vector spaces

In order to get a better sense of what is going on with orthogonal projection
we need some ideas about vector subspaces. It will also help to take a slightly more
general point of view.

To that end let us suppose that we have two vector spaces E1, E2 ⊂ Cn. We
denote by E1 + E2 the vector space so that w ∈ E1 + E2 when and only when
there are v1 ∈ E1,v2 ∈ E2 so that w = v1 +v2. It is straightforward to check that
E1 + E2 is a vector space and I leave it as an excercise.

An important fact is that if E1 ∩ E2 = {0} then each w ∈ E1 + E2 can be
written UNIQUELY as w = v1 + v2 where v1 ∈ E1 and v2 ∈ E2. To see this
suppose that w = v1 +v2 and w = v′1 +v′2 where vi,v′i ∈ Ei. By equating the two
sides we have v1 + v2 = v′1 + v′2 that is v1 − v′1 = v′2 − v2 we denote the common
value by v. Notice the left hand side is in E1 while the right hand side is in E2 and
so v ∈ E1 ∩ E2 and so v = 0. In other words v1 = v′1 and v2 = v′2.

We will mostly be interested in situations where E1 and E2 span Cn that is
E1 + E2 = Cn and E1 ∩ E2 = {0}. In this case we say that E1 and E2 are
complimentary. The idea here is now that any vector w ∈ Cn can be written as
w = v1 + v2 where vi ∈ Ei.

For example: Let {bi} be a basis of Cn, i = 1, . . . , n if E1 = span {b1, . . . ,bk}
and E2 = span {bk+1, . . . ,bn} then E1 and E2 are complementary subspaces.

One important task is: Given two complementary vector spaces E1, E2 in Cn

we know that for any w ∈ Cn we have w = v1 + v2 with vi ∈ Ei and this
decomposition is unique. The question is to what extent can we determine v1 from
w.

We claim that in fact there is a fairly straightforward answer to this question.
Namely there is a n×n matrix P so that v1 = Pw. Such a P is called a projector.
We will return to them in a bit.

Before disucssing projectors we wish to point out one final thing. If E1 and
E2 are orthogonal subspaces in Cn and they span Cn then they are automatically
complementary (any v ∈ E1 ∩ E2 would satisfy 〈v,v〉 = 0). In this case E1 and
E2 are said to be orthogonal complements. We’ve already seen that it is fairly
straightforward to find the orthogonal projector in this case. Indeed, let us use our
fact that we can find {q1, . . . ,qk} an orthonormal basis of E1 then as we’ve seen
for any w ∈ Cn

w = (
k∑

j=1

qjq∗j )w + r

where r is orthogonal to the qi and hence to E1 and so lies in E2. In particular our
projector in this case is P =

∑k
j=1 qjq∗j .

3. Projectors

As mentioned in the previous section for any pair of complementary spaces
E1, E2 ⊂ Cn there are matrices P1 and P2 in Cn×n so that P1w ∈ E1 and P2w ∈ E2

and w = P1w + P2w. We then call the Pi projectors.
To see this we argue as follows. Let e1, . . . , en be the standard basis of Cn. For

each i the fact that E1 and E2 is orthogonal allows us to write

ei = ai + bi
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so that ai ∈ E1 and bi ∈ E2 and the ai and bi are neccesarily unique. We then
set:

P1 =
[
a1| · · · |an

]
, P2 =

[
b1| · · · |bn

]
.

And claim that P1 and P2 are the desired matrices. To see this it suffices to show

Lemma 3.1. Let v ∈ E1 then P1v = v and P2v = 0.

Proof. Write v =
∑n

i=1 viei =
∑n

i=1 vi(ai + bi) =
∑n

i=1 viai +
∑n

i=1 vibi.
Notice that the first summand is in E1 while the second is in E2. Since we can also
write v = v + 0 where the first summand is in E1 and the second is in E2 by the
uniquess of the decomposition (as E1 and E2 are complementary we have

v =
n∑

i=1

viai

and

0 =
n∑

i=1

vibi

One the other hand, P1v = P1 (
∑n

i=1 viei) =
∑n

i=1 viai and P2v =
∑n

i=1 vibi. �

Corollary 3.2. If w ∈ Cn then P1w ∈ E1 and P2w ∈ E2 and w = P1w +
P2w.

Proof. The columns of P1 are in E1 so R(E1) ⊂ E1 and similarly R(P2) ⊂ E2.
Now write w = w1+w2 with w1 ∈ E1 w2 ∈ E2. We see that P1w = P1(w1+w2) =
P1w1 + P1w2 = w1 by the proceeding lemma. Similarly, P2w = w2. �

Notice that this proof is not constructive so we don’t have a good way to find
P .

4. Projectors

It is useful to formalize the notion of a projector as a property inherent to a
matrix. This allows us to more easily answer and manipulate questions about com-
plementary subspaces. To that end, we say a n×n matrix P is an oblique projector
(or just projector) if P 2 = P (such a property is often called begin idempotent).
Notice that Lemma 3.1 implies that the matrix P1 is a projector in this sense.

Once you have a projector P , you can get a different projector Q = I−P called
the complementary projector. We check this as follows: Q2 = (I − P )2 = I − P −
P + P 2 = I − P = Q. Note that P is then the complementary projector of Q. A
useful fact is that N(P ) = R(Q) and N(Q) = R(P ). Check this: w = Qv = v−Pv
then P (v) − P 2(v) = 0. So R(Q) ⊂ N(P ). On the other hand if Pv = 0 Then
Qv = v− Pv = v. Note if P1 is the projector of the proceeding section then P2 is
the complementary projector.

As we saw given a pair of complementary spaces E1 and E2 we obtain comple-
mentary projectors P1 and P2. The converse is also true, namely, suppose that we
are given a projector P an n×n matrix and let Q be the complementary projector.
The previous fact allows us to see immediately that R(P ) and R(Q) are comple-
mentary subspaces of Cn. Indeed, for any vector w ∈ Cn we have w = Pw + Qw.
To check this, we need to check that any vector w can be written as the sum of
avector in the range of P and a vector in the range of Q and that this is unique.
The first is obvious Pw + Qw = Pw + (I − P )w = w. The second uses our fact.
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I.e. if w ∈ R(P ) ∩ R(Q) then w ∈ R(Q). But then by above w ∈ N(P ). But
w ∈ R(P ) so w = Pv so 0 = Pw = P 2v = Pv = w.

That is given a projector we obtain a pair of complementary subspaces for
which the projector tells us how to decompose.

5. Orthogonal Projectors Revisited

We now return to the concept of Orthogonal Projector. We say a projector
is orthogonal provided the R(P ) and R(Q) are orthogonal subspaces, i.e. are or-
thogonal complements. It is important to note that orthogonal projectors are NOT
orthogonal or unitary matrices.

They are however hermitian matrices and in fact this characterizes them. That
is we have the following

Theorem 5.1. A projector P is an orthogonal projector if and only if P ∗ = P .

Proof. (⇐) Let Q = I − P be complementary projector. If w ∈ R(Q) then
w = Qv = v − Pv for some v. Now let a ∈ R(P ) so a = Pb. Then 〈w,a〉 = 〈v −
Pv, Pb〉 = 〈P ∗v−P ∗Pv,b〉 Now using P = P ∗ this gives 〈Pv−P 2v,b〉 = 〈0,b〉 =
0. (⇒) In order to show this we must use the fact that any E ⊂ Cn a vector space
admits an orthonormal basis. We will show this in a couple of lectures. We know
that R(P ) and R(Q) are orthogonal compliments. Let x1, . . . ,xk be an orthonormal
basis of P and let xk+1, . . . ,xn be an orthonormal basis of R(Q). Notice that then
x1, . . . ,xn is then an orthonormal basis of Cn. Now, Pxj = 0 for k + 1 ≤ j ≤ n as
such xj ∈ R(Q) = Null(P ). On the other hand Pxj = xj for 1 ≤ j ≤ q. This is
because xj = Px′j but then Pxj = P 2x′j = Px′j = xj . Thus, in terms of the basis
{x1, . . . ,xn} P looks pretty nice. Let X =

[
x1| · · · |xn

]
be the n×n matrix with

columns xi. Notice that X is unitary. Given a general vector v, v =
∑

j cjxj where
c = X−1v = X∗v. In particular, Pv = P (

∑
j cjxj) = XIdkc = XIdkX∗v. Here

Idk is matrix with 1 along diagonal for first k rows and then 0s elsewhere. In other
words P = XIdkX∗. Then P ∗ = (XIdkX∗)∗ = (X∗)∗Id∗kX∗ = XIdkX∗ = P . �

One final remark: Given a subspace E, there are lots of complementary sub-
spaces. These correspond to different oblique projectors P with R(P ) = E. How-
ever, it is not too hard to see that there is only one orthogonal projector P⊥ with
R(P⊥) = E. Equivalently, there is only one complementary subspace that is or-
thogonal.



CHAPTER 10

Eleventh and Twelfth Lectures

In this lecture I started talking about the four fundamental spaces associated
to a matrix.

1. Orthogonal Complement

One bit of notation I do want to introduce. Given E ⊂ Cn a vector space I will
denote by

E⊥ = {v ∈ Cn : 〈v,w〉 = 0,w ∈ E}
this is the orthogonal complement of E. It is clear that E⊥ is a vector space and
that E and E⊥ are orthogonal. We claim also that E +E⊥ = Cn, that is E,E⊥ are
orthogonal complements. We also claim that if P is an orthogonal projector with
R(P ) = E then E⊥ = R(I − P ). Similarly, given E there is exatly one orthogonal
projector P so that R(P ) = E and then E⊥ = R(I − P ).

2. Four fundamental spaces of a matrix

Let A be a m× n matrix. We then have two natural vector spaces associated
to A. Namely N(A) ⊂ Cn and R(A) ⊂ Cm. The null space and column space of
A. Notice that it is important to think of these as being in different spaces (even
if m = n). We now introduce two more important subspaces associated to A as we
will see these turn out to be orthogonal complements of the original two.

The first of these is the row space of A. We denote this by Row(A) ⊂ Cn and
we set Row(A) := R(A∗). Notice this is essentially the span of the rows, however
we have taken an adjoint in order to make the rows vectors. The second of these
is called the Left Null Space and is denoted by L − Null(A) ⊂ Cm and we set
L−Null(A) := N(A∗).

Notice that the row space sits in Cn along with N(A), while the left null space
sits in Cm along with R(A). We justify the terminology for left null space as
follows: Basically it consists the rows which when multipliel agains A on the left
give 0 (using the adjoint to turn rows into vectors).

It turns out that Row(A) = R(A∗) and N(A) are orthogonal complements
in Cn and L − Null(A) and R(A) are orthogonal complements in Cm. That is
Row(A) = N(A)⊥ and L −Null(A) = R(A)⊥. Taken together all four spaces are
known as the four fundamental spaces of the matrix A.

To prove this it suffices to restrict attention to N(A) and R(A∗). As we will see
this is enought. We first verify these two spaces are orthogonal: Take v ∈ R(A∗)
and w ∈ N(A). So v = A∗v′ for v′ ∈ Cm. Then 〈v,w〉 = 〈A∗v′,w〉 = 〈v′, Aw〉 =
〈v′, 0〉 = 0.

In order to complete the claim we must still show that R(A∗) + N(A) = Cn.
To do this we will actually show something about the dimension of these spaces.

39



40 10. ELEVENTH AND TWELFTH LECTURES

Namely, dimR(A∗)+dimN(A) = n i.e. the dimension of the row space is the same
as the dimension of the null space.

To see this we use Gaussian elimination. The point is that for each column
operation we can do on A there is a corresponding row operation we can do on A∗.
More precisely, suppose one gets B ∈ Cm×n from A by a column operation. Then
one gets B∗ from A∗ by a row operation.

As an example consider

A =
[
a1| · · · |an

]
and let

B =
[
a1 + a2| · · · an

]
(i.e adding second column to the first) then

A∗ =

a∗1
...

a∗n


and

B∗ =

(a1 + a2)∗
...

a∗n

 =

a
∗
1 + a∗2

...
a∗n


which is adding second row to the first. Similarly row operations on A become row
column operations on A∗.

A consequence of this fact is that (rref(A))∗ = cref(A∗). That is:

Lemma 2.1. Let A ∈ Cm×n then (rref(A))∗ = cref(A∗) and (cref(A))∗ =
rref(A∗).

Proof. It is straightforward to check that if a matrix B is in row reduced
echelon form (rref) then B∗ is in column reduced echelon form (cref). (Go back
to the definition to convince yourself). Since hence rref(A)∗ is in cref and since
rref(A) is obtained from A by a finite number of row operations, rref(A)∗ is
obtained from A∗ by a finite number of column operations. By the uniqueness of
cref(A∗) we then see that cref(A∗) = rref(A). �

As a consequence fo this, the number of pivots in rref(A) is the same as the
number of pivots of cref(A∗) and number of pivots of cref(A) is same as number
of pivots of rref(A∗). An important fact we have already used was that for an
arbitrary m× n matrix B, dimR(B) was the number of pivots (say k) of cref(B).
Similarly, if the number of pivots of rref(B) is l then dimN(A) = n − l. Hence
dimN(A) is n− k where k is the number of pivots of rref(A). However, rref(A)∗

has the same number of pivots as cref(A∗) and so we have dimR(A∗) = k. Hence
dimN(A) + dimRow(A) = n as claimed.

We can now show that R(A∗) and N(A) are orthogonal complements. Notice
we’ve already shown they are orthogonal. Pick a basis v1, . . . ,vk of R(A∗) and a
basis vk+1, . . . ,vn of N(A). Notice the numbers of vectors is right as dimRow(A)+
dimN(A) = n. We claim v1, . . . ,vn is a basis. Its enough to check that it is linearly
independent. Suppose that

∑n
i=1 civi = 0 =

∑k
i=1 civi +

∑n
i=k+1 civi. But then

(by uniqueness of the decomposition)
∑k

i=1 civi = 0 and
∑n

i=k+1 civi. Then by
linear independence in R(A∗) and N(A) ci = 0 for all i.
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We now can conclude that L−Null(A) and R(A) are orthogonal complements.
To see this it is enough to notice that R(A) = Row(A∗) and L−Null(A) = N(A∗).
And use what we already showed only for A∗ instead of A.

3. Relations amongst the Fundamental Spaces

We can now get useful relationships between the sizes of the fundamental spaces
of A.

Theorem 3.1. Let A ∈ Cxm×n then dimR(A) = dimR(A∗) i.e the dimension
of the row space is the same as that of the column space.

Proof. Pick v1, . . . ,vk a basis of R(A∗) and vk+1, . . . ,vn a basis of N(A).
As we saw above the set v1, . . . ,vn is a basis of Cn. Now let wi = Avi. Notice
that wi = 0 for k + 1 ≤ i ≤ n. We claim however, that for 1 ≤ i ≤ k, the
wi form a basis of R(A). Lets check they are linearly independent. Suppose
0 =

∑k
i=1 ciwi = A

∑k
i=1 civi. Hence v =

∑k
i=1 civi ∈ N(A). But v ∈ R(A∗) (by

our set up) so must have v = 0. However, as the vi are a basis, all the ci = 0. Let’s
check they span R(A). Pick w ∈ R(A). Write w = Rv. Now as N(A) and R(A∗)
are complementary in Cn we can write v = a + b where a ∈ N(A) and b ∈ R(A∗).
Then w = Av = A(a + b) = Aa + Ab = Ab. Now write b =

∑k
i=1 civi. Then

w = Ab =
∑k

i=1 ciwi so the wi span R(A). Thus dimR(A) = k = dimR(A∗). �

Corollary 3.2. Let A ∈ Cm×n then dimR(A) is the number of pivots in
rref(A).

Corollary 3.3. (Rank-Nullity Theorem) Let A ∈ Cm×n then dimR(A) +
dimN(A) = n.

4. Other Facts about the fundamental spaces

A good example of using the four fundamental subspaces is the following fact:

Proposition 4.1. Let A ∈ Cm×n then A∗Av = 0 if and only if Av = 0.

Proof. If Av = 0 then it is clear that A∗Av = 0. On the other hand, if
A∗Av = 0 then Av is in N(A∗) i.e. in L − Null(A). On the other hand Av
is clearly in R(A). That is Av ∈ L − Null(A) ∩ R(A) but these two spaces are
complements so Av = 0. �

Let us pick out a matrix factorization from the proof of Theorem 3.1. Pick an
orthonormal basis vi of Cn so that v1, · · · ,vk is an orthonormal basis of R(A∗)
and vk+1, · · · ,vn is an orthonormal basis of N(A) (well see why we can do this
next lecture). Similarly, pick a basis of Cm wj so that w1, . . . ,wk is a orthonormal
basis of R(A) and wk+1, . . . ,wm is an orthonoraml basis of L−Null(A). Then

A = W

[
Â 0
0 0

]
V −1 = W

[
Â 0
0 0

]
V ∗

Where Â is a k×k non-singular matrix. And the values 0 specify a k×(n−k) matrix
with all zero entries, a (m−k)×k matrix with all zero entries and a (m−k)×(n−k)
matrix with all zero entries.





CHAPTER 11

Thirteenth Lecture

We discussed the Gram-Schmidt Orthogonalization and began discussing the
QR factorization of a matrix.

1. Gram-Schmidt Orthogonalization

We’ve mentioned a number of times already that given a basis v1, . . . ,vk of
E ⊂ Cn one can construct an orthonormal basis q1, . . . ,qk of E. We will give you
a simple algorithm for doing this. By doing so we give a proof of the existence of
such a basis (since we already know every space has some basis).

There are a number of ways to do this, I’m going to start with the classical
Gram-Schmidt procedure. This is the easiest orthogonalization procedure from
a theoretical point of view, however computationally it has some problems (it is
unstable, in other words the rounding errors on a computer can cause major prob-
lems).

The basic idea is to start with a given basis and to produce an orthonormal
basis. The method to do so is iterative. Namely let v1, . . . ,vk be a basis of E ⊂ Cn.
We proceed as follows: Start with v1 and let E1 = span {v1}. We want to find
an orthonormal basis of E1. This is easy: set q1 = v1/||v1||2. Notice that v1 6= 0
(otherwise it couldn’t be part of a basis. Now let E2 = span(v1,v2) = span(q1,v2).
We want to find an orthonormal basis of E2 this is a little bit harder as q1 and v2

need not be orthogonal. But notice that Pq1v2 6= v2 and if we let q̂2 = v2−Pq1v2 =
P⊥q1v2 = v2−〈q1,v2〉q1 then q̂2 ∈ E2 is non-zero and 〈q1, q̂2〉 = 0. Hence we can
set q2 = q̂2/||q2||2. The reason this works is if Pq1v2 = v2 then one would have
that v2 ∈ span(q1) = span(v1) i.e. v2 and v1 would be linearly dependent.

Inductively, we have a method that takes {v1, . . . ,vk} and gives {q1, . . . ,ql,vl+1, . . . ,vk}
where Ej = span {q1, . . . ,qj} = span {v1, . . . ,vj} and {q1, . . . ,qj} is an orthonor-
mal basis of Ej here 1 ≤ j ≤ l. We now wish to produce ql+1 from vl+1 so that
now q1, . . . ,ql+1 is a orthonormal basis for El+1 = spanv1, . . . ,vl+1.

To do this we again note that if we set q̂l+1 = vl+1 − PEl
vl+1 = vl+1 −∑l

j=1〈qj ,vl+1〉qj . Then q̂l+1 is non-zero and orthogonal to each qj 1 ≤ j ≤ l.
Setting ql+1 = q̂l+1/||q̂l+1||2. Then provides the iteative step. Again we have used
the fact that the vi are linearly independent to ensure that q̂l+1 6= 0.

Iterating this k times produces the desired q1, . . . ,qk.
We can write this algorithm in pseudo-code as:

For j = 1 to k aj = vj

For i = 1 to j − 1
rij = q∗i vj

aj = aj − rijqi

rjj = ||aj ||2 qj = aj/rjj

43



44 11. THIRTEENTH LECTURE

Where this has numerical problems is when the vi are close to parallel.

2. The QR factorization

We are now going to apply this idea of orthogonalization to a matrix. The idea
is to look at a matrix A ∈ Cm×n and try and get an orthonormal basis for the
column space of A. But we are actually going to be more careful than that.

Consider the columns of A so we have

A =
[
a1| · · · |an

]
We get a whole sequence of spaces E1 = span(a1), E2 = span(a1,a2), . . . , En =
span(a1, . . . ,an). So E1 ⊂ E2 ⊂ . . . ⊂ En = R(A). What we want to do is in sense
get an orthonormal basis for all of these subsets. That is find an orthonormal set
q1, . . . ,qk so that E1 = span(q1), E2 = span(q1,q2), . . . , En = span(q1, . . . ,qk).
Being able to do this will be equivalent to given a good factorization of the matrix
A. Notice that by a dimension count we are implicity assuming that the a1, . . . ,ak

are linearly independent.
Well starting from an arbitrary A ∈ Cm×n and assume for this discussion that

m ≥ n and that A has full rank (i.e. n). This later condition implies that the
columns are linearly independent. If we can find qi ∈ Cm as desired then we have

a1 = r11q1,a2 = r12q1 + r22q2, . . . ,an = r1nq1 + . . . , rnnqn

Notice this is equivalent to the matrix factorization

[
a1| · · · |an

]
=
[
q1| · · · |qn

]


r11 r12 · · · r1n

0 r22 · · · r2n

...

. . .
...

0 · · · 0 rnn


That is

A = Q̂R̂

where Q̂ ∈ Cm×n has columns that are the orthonormal vectors qi for 1 ≤ i ≤ n
and R̂ ∈ Cn×n is upper triangular. This is called the reduced QR factorization

For certain purposes it is convenient to have a different form of the factorization.
That is we want to replace the Q̂ term by a unitary term Q. As m ≥ n, we can
do this by adding extra elements to Q that complete the columns fo Q to an
orthonormal basis of Cm. Namely let qn+1, . . . ,qm ∈ Cm be an orthonormal basis
of R(A)⊥ = L − N(A). Then one has that q1, . . . ,qm is an orthonormal basis of
Cm so in particular

Q =
[
q1| · · · |qm

]
∈ Cm×m

Is unitary.
Then setting

R =
[
R̂
0

]
,

so R ∈ Cm×n is still upper triangular we obtain the full or unreduced QR factor-
ization as

A = QR.
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Notice that the span of the “silent” columns in the full QR factorization are
precisely an orthonormal basis of R(A)⊥ = L−Null(A).

One important geometric interpretation the full QR factorization allows is the
following: The range of the matrix R is precisely the n-dimensional subspace of Cm

where the last m − n entries are zero. For instance if m = 3 and n = 2 then the
range of R is exactly the plane with third component zero. The matrix Q then acts
as a sort of “rotation” which allows us to obtain all other n-dimensional subspaces.
One way to think of this is that the Q tells us where R(A) sits in Cm while R tells
us how vectors in R(A) and in Cn are identified.





CHAPTER 12

Fourteenth Lecture

We introduced the QR factorization in the last lecture. We discuss it in a bit
more depth.

1. The QR factorization

Recall, the QR factorization worked by starting with a matrix A ∈ Cm×n where
m ≥ n and A with full rank (i.e. dim R(A) = n). We write

A =
[
a1| · · · |an

]
.

The reduced QR factorization is a factorization:

A = Q̂R̂

where Q̂ ∈ Cm×n has columns

Q̂ =
[
q1| · · · |qn

]
where {qi} ∈ Cm are an orthonormal set of vectors and R̂ ∈ Cn×n is upper trian-
gular. It is straight forward to verify that span(a1, · · · ,ak) = span(q1, · · · ,qk) for
1 ≤ k ≤ n.

For certain purposes it is convenient to have the so called full QR factorization
Here

A = QR

where
Q =

[
q1| · · · |qn qn+1| · · · |qm

]
is now in Cm×m and is unitary. We then have R ∈ Cm×n still upper triangular.
Notice that then the bottom rows must be all zero then. The additional vectors
qn+1, . . . ,qm are “silent” and are arbitrary as long as they an orthonormal basis
of R(A)⊥ = L−Null(A).

We are also interested in the case where A does not have full rank. In this case
there is still a QR factorization. We just have to modify our algorithm a bit.

Theorem 1.1. Every A ∈ Cm×n with (m ≥ n) has a full QR factorization.

Proof. We will actually construct a reduced QR factorization of A and then
complete it to a full QR factorization as needed. The proof is just the Gram-
Schmidt algorithm. However, we can no longer ensure that the columns of A
are linearly independent. In particular it may happen that span(a1, . . . ,aj) =
span(a1, . . . ,aj+1).

More precisely. Start with a1 if a1 = 0 choose q1 an arbitrary unit vector and
in this case take r11 = 0. If a 6= 0 set q1 = a1/||a1||2 take r11 = ||a1||2. Notice in
both cases:

a1 = r11q1.

47



48 12. FOURTEENTH LECTURE

Now proceed inductively: That is suppose we’ve gotten q1, . . . ,qk from a1, . . . ,ak.
Notice that in this case span(q1, . . . ,qj−1) ⊃ span(a1, . . . ,aj−1) We want to find
qj . To do so, we (as before) set rij = 〈aj ,qj〉 and q̂j = aj −

∑
i = 1j−1rijqj . By

the bilinearity of the inner product 〈q̂j ,aj〉 = 0. If q̂j = 0 we take rjj = 0 and pick
qj to be any unit vector orthogonal to q1, . . . ,qj−1 otherwise set rjj = ||q̂j ||2 and
qj = r−1

jj q̂j . Then

aj =
j∑

i=1

rijqj

Hence, if we set
Q̂ =

[
q1| . . . qn

]
and

R̂ =


r11 r12 · · · r1n

0 r22 · · · r2n

...
. . .

...
0 · · · 0 rnn


we obtain a reduced QR factorization of A. To get the full QR factorization we
can add the silent columns as before. That is we find qn+1, . . . ,qm forming an
orthonormal basis of span(q1, . . . ,qm). �

Remark 1.2. Notice that R(A) ⊂ span(q1, . . . ,qm) with equality only when
A has full rank. One consequence is that the silent columns qn+1, . . . ,qm while
lying in L−Null(A) no longer need to form a basis. Another consequence is that
A has full rank when and only when rii 6= 0 for all i = 1, · · · , n.

Remark 1.3. One may wonder how to find qj when rjj = 0. Notice that we
want qj to be orthogonal to each qi for 1 ≤ i ≤ j − 1. That is if we set

Q̂j−1 =
[
q1| · · · qj−1

]
∈ Cm×(j−1)

we need Q̂j−1qj = 0 and ||qj ||2 = 1. Another way to think about this that
qj ∈ Q̂∗

j−1) so qj can be found by Gaussian elimination (though there is likely a
more efficient algorithm).

The full QR factorization tends not to be unique. This is because silent columns
are not specified by the algorithm. While this is not an issue with the reduced QR
factorization. There is still non-uniqueness in this case. To see this, note one can
multiply the ith column of Q̂ by some λ ∈ C so that |λ| = 1 and get a new matrix
Q̂′ which still has orthonormal columns, if one multiplies the ith row of R̂ by λ−1

to get R̂′ then this is still upper triangular and Q̂R̂ = Q̂′R̂′. This corresponds to
the arbitrary choice that one makes in the Gram-Schmidt algorithm.

However, there is uniqueness if A is full rank and one demands R̂ have a special
form.

Theorem 1.4. For each A ∈ Cxm×n with m ≥ n and so that A has full rank
there is a unique reduced QR factorization

A = Q̂R̂

So that the diagonal entries of R̂ are positive real numbers (i.e. rii > 0).
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Proof. If we look at the proof of the preceeding theorem we see that every-
thing is determined except the“sign” of rii. If we insist that rii > 0 then we are
done. �

2. Solving a System via QR factoriation.

One thing the QR factorization allows us to do is to solve systems. Let A ∈
Cm×m be non-singular matrix (i.e. of full rank). And fix b ∈ Cm. We want to
solve

Ax = b

The usual way is to use Gaussian elimination, which in a sense is a better approach
to this specific problem. First theroem of this lecture there is a QR factorization
of A and as m = n the reduced is the same as the full so we write

A = QR

Here Q is unitary and R is upper triangular with no non-zero entries on the diagonal.
This latter fact follows as A is non-singular.

Hence, one has
Rx = Q∗b

Now we are solving a system of equations where the system consists of an upper
triangular matrix. This can easily be solved by back-substitution.

An example: Let

A =

0 −3 0
0 4 1
4 0 1


And lets solve

Ax =

1
0
0


To start

a1 =

0
0
4

⇒ q1 =

0
0
1


and so r11 = 4. Now 〈a2,q1〉 = 0 and so r12 = 0 and

q2 =

−3/5
4/5
0


and r22 = 5. Finally, 〈a3,q1〉 = 1 and 〈a3,q2〉 = 4/5 so r13 = 1 and r23 = 4/5 thus

q̂3 =

12/25
9/25

0


so r33 = 3/5 and

q3 =

4/5
3/5
0
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Hence

A =

0 −3/5 4/5
0 4/5 3/5
1 0 0

4 0 1
0 5 4/5
0 0 3/5


And so

Rx = A∗b =

 0 0 1
−3/5 4/5 0
4/5 3/5 0

1
0
0

 =

 0
−3/5
4/5


Then 4 0 1

0 5 4/5
0 0 3/5

x =

 0
−3/5
4/5


So x3 = 4/3, 5x2 = −3/5− 16/15 = −5/3 so x2 = −1/3. Then 4x1 = −4/3 so

x =

−1/3
−1/3
4/3





CHAPTER 13

Fifteenth Lecture

We use the QR factorization to study a problem about solve overdetermined
systems of linear equations “approximately”..

1. Least Squares Method

Recall we say that a system of linear equations is overdetermined if there are
more equations then unknowns. That is one has A ∈ Cm×n with m > n and look
at

Ax = b

for a fixed b ∈ Cm. By the rank-nullity theorem dimR(A) ≤ n < m so for “most”
b this equation has no solution.

In this case what we do is study the so called residual

r = b−Ax ∈ Cm

The idea is to try and find the x that makes the residual as small as possible.
In order to do this we need to have a notion of “size” for vectors. We will discuss

this more later but for now we take the 2-norm, that is we try and minimize:

||b−Ax||2.

That is we try and find x so that r has least length, in other words soAx is the closest
vector in R(A) to b. This turns out to be natural from both geometric point of
view and from more experience. It also has the advantage of being mathematically
and algorithmically very tractable.

So how do we find the x that minimizes the residual? It turns out that there is
a nice characterization in terms of linear algebra that we have already developed:

Theorem 1.1. Let A ∈ Cm×n (m ≥ n) and b ∈ Cm. A vector x ∈ Cn

minimizes the residual ||r||2 = ||b − Ax||2 if and only if r is orthogonal to R(A)
that is r ∈ L−Null(A) (i.e. A∗r = 0).

Proof. ⇒ By our hypothesis for any y ∈ R(A), and t ∈ R for t 6= 0 then
||b− (Ax + ty)||2 ≥ ||r||2. We can square both sides so obtain:

||b−Ax− ty||22 ≥ ||r||22
||r− ty||22 ≥ ||r||22

||r||22 − t(〈r,y〉+ 〈y, r〉+ t2||y||22 ≥ ||r||22
Here the last line follows by expanding out the inner product. Thus, after dividing
by t (since it is not 0)

−(〈r,y〉+ 〈y, r〉) + t||y||22 ≥ 0.
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By letting t → 0 get

−(〈r,y〉+ 〈y, r〉) ≥ 0

Notice that by replacing y by −y be get

−(〈r,−y〉+ 〈−y, r〉) ≥ 0

〈r,y〉+ 〈y, r〉 ≥ 0

So 〈r,y〉 + 〈y, r〉 = (〈r,y〉 + 〈r,y〉 = 0 this means 〈r,y〉 is purely imaginary. By
replacing y by ±y be get

−(〈r,±Iy〉+ 〈±Iy, r〉) ≥ 0

−(±I〈r,y〉 ∓ I〈y, r〉) ≥ 0

∓I(〈r, Iy〉 − 〈Iy, r〉) ≥ 0

This implies 〈r,y〉 is purely real and hence combining with the above is 0.
⇐. We need to show that if r is orthogonal to R(A) then for any point y ∈ R(A)

one has ||b− y||2 ≥ ||r||2. To do so we note that Ax− y ∈ R(A) and b− Ax = r
is orthogonal to this so

||b− y||22 = ||b−Ax + Ax− y||22 = ||b−Ax||22 + ||Ax− y||22 ≥ ||r||22
Here we used the Pythagorean theorem. �

A useful consequence of this theorem is then: Let P ∈ Cm×m be a orthogonal
projection onto R(A). Then r = b−Ax minimizes the residual norm if and only if
x solves

Ax = Pb.

which we know has at least one solution (since Pb ∈ R(A)). Notice that x is unique
when only when N(A) = {0} i.e. if A has full rank. We will usually assume this.

One other way to think about this is as a right approximate inverse Idea is let
A ∈ Cm×n with m ≥ n and A of full rank. For each ei a standard basis vector of
Cm let bi be the unique vector in Cn so that

Abi = Pei

and set
B =

[
b1| cdots |bm

]
∈ Cn×m

Now AB = P . In other words, if we let Q be the compelementary projector to P
(so Q projects orthogonally onto R(A)⊥ = L−Null(A) then

AB = I −Q

So for instance if the left null space is zero we have an actual inverse.

2. Least Squares from QR factorization

So how do we use this in practice? We need to find the the projection onto
R(A). The key is getting an orthonormal basis. We’ve used this before (but maybe
not said it so clearly). Basically, let v1, . . . ,vk be an orthonormal basis of R(A).
Then one checks that

P =
k∑

i=1

viv∗i = V V ∗ ∈ Cm×m
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gives orthogonal projection onto R(A). It suffices to verify that P 2 = P , P ∗ = P
and that R(P ) = R(A). I leave this as an excersize.

Thus we need to find an orthonormal basis of R(A). The QR factorization
provides a good way to do this. To make this work we need to work with full rank
A in Cm×n (m ≥ n). If we take the reduced QR factorization ie.

A = Q̂R̂

then if we set
P = Q̂Q̂∗

then P ∈ Cm×m is orthogonal projection onto R(A). (Recall the columns of Q̂ are
an orthonormal basis of R(A)). Notice if A is not full rank, then we can’t ensure
that the columns of Q̂ are not necessarily inside of R(A). This is one reason to
start with A of full rank. So we are solving

Q̂R̂x = Pb = Q̂Q̂∗b.

That is
Q̂R̂x− Pb = Q̂Q̂∗b = Q̂

(
R̂x− Q̂∗b

)
= 0.

As Q̂ has columns which are orthonormal, the columns are all linearly independent
so N(Q̂) = 0. Thus the equation we want to solve is:

R̂x = Q̂∗b.

This yields the following algorithm for solving the problem (at least for full
rank A ∈ Cm×n):

(1) Compute the (reduced) QR factorization A = Q̂R̂.
(2) Compute the vector b′ = Q̂∗b
(3) Solve the upper-triangular system R̂x = b′.

Notice that (1) is the most computationally intensive step. We can do it by either
the Gram-Schmidt algorithm already discussed or some other approachs we discuss
in the next lecture. For the last step one uses back substitution.

3. Application:NIC

Least-Squares is used in many different contexts. I’ll present one important
instance, namely fitting a polynomial to data. The basic set is to start with m
points (x1, y1), . . . , (xm, ym) in R2 (or C2). We assume xi 6= xj for i 6= j. With out
this hypthoesesis the points wouldn’t lie on any graph of any function of x. We
look for a polynomial P of degree n− 1 so that P (xi) = yi.

If we write
P (x) = c0 + c1x + . . . + cn−1x

n−1

then we are looking for c0, . . . , cn−1 so that P (xi) = yy. Finding such ci is a linear
problem (even though polynomials tend to be very non-linear). Indeed, if we write:

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
1 xm x2

m · · · xn−1
m


 c0

...
cn−1

 =

 y1

...
ym
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We see we are really solving a system of linear equations. We shorten this to

Xc = y

Here X ∈ Cm×n is the called the Vandermonde matrix.
It turns out that the condition that xi 6= xj implies that X is full rank (Excer-

cise!). In particular, if m = n we can always find the desired P so taht P (xi) = yi.
It turns out choosing such a polynomial is less than ideal. The problem is that

the graph doesn’t interpolate the points well. That is, in between adjacent values
x1, x2 the graph might become very far from y1 and y2. A related issue is that
if the xi and yi are changed slightly, the approximating polynomial might change
radically. Since data is noisy this is not desirable. It turns out that this issue is
lessened if one uses a lower degree polynomial. That is take m < n. In this case
one has an overdetermined system of equations so one has to look at “approximate”
solutions as above.
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Sixteenth and Eighteenth Lectures

We discuss alternate methods of computing the QR factorization. These are
better suited for implementation on a computer.

1. Modified Gram-Schmidt

We have seen how to compute the QR factorizations using the Gram-Schmidt
algorithm and this is perfectly fine from a theoretical point of view. Practically
however, the algorithm handles rounding errors very poorly (mainly an issue when
the initial basis contains vectors that are nearly parallel). To see how to get around
this we first give a variant of Gram-Schmidt that is better behaved.

Lets think for a moment about what Gram-Schmidt itself does. Let {a1, . . . ,an}
be a of linearly independent vectors in Cm. The Gram-Schmidt algorithm produces,

q1 =
P1a1

||P1a1||2
,q2 =

P2a2

||P2a2||2
, . . . ,qk =

Pkak

||Pkak||2

where here P1 is the identity matrix and for j ≥ 2 each Pj ∈ Cm×m is orthogonal
projection onto span(q1, . . . ,qj−1)⊥. As the qi are an orthonormal set of vectors
we can write:

Q̂j−1 =
[
q1| · · · |qk

]
and then Q̂j−1Q̂

∗
j−1 gives projection onto span(q1, . . . ,qj−1). Thus Pj projection

onto the orthogonal complement is given by

Pj = I − Q̂j−1Q̂
∗
j−1

Notice that each Pj is of rank m − (j − 1). An important observation is that
one can factorize the Pj in terms of rank m− 1 orthogonal projectors:

Pj = P⊥qj−1 · · ·P⊥q2P⊥q1I

This follows by noting that Pj = I −
∑j

i=1 qiq∗i and P⊥qi
= I − qiq∗i and taking a

product. I leave the details as an exercise. This gives another algorithm which is
less sensitive to rounding errors.

Idea of the algorithm: Start with aj set v(1)
j = aj . One iteratively computes

as follows: At the ith step, set vj = v(j)
j , rii = ||vi||2 and qi = r−1

ii vi and set

v(i+1)
j = P⊥qi

v(i)
j .

Another way to think about this is that there are upper triangular matrices
R1, R2, . . . , Rn (in Cn×n) so that[
q1 · · · |qj−1 |v(j)

j | · · · |v(j)
n

]
Rj =

[
q1 · · · |qj |v(j+1)

j+1 | · · · |v(j+1)
n

]
55
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We refer to Trefethen and Bau Lecture 8 for the exact form of the Rj . Then one
has

AR1R2 . . . Rn = Q̂

One can check that the product of upper triangular matrices is still upper triangular
and one of your homework exercises was to show the inverse was upper triangular
so with

R̂ = (R1R2 . . . Rn)−1

one obtains a reduced QR factorization:

A = Q̂R̂

2. Householder Reflections

So we saw how to determine a (reduced) QR factorization by repeated multi-
plications by upper triangular matrices that in the end produces a unitary matrix.
Another approach is to use unitary matrices to produce an upper triangular matrix.
This is known as the Householder algorithm.

Basic idea is to write
A =

[
a1| · · · |an

]
we want to find a Q1 ∈ Cm×m that is unitary and so that

Q1A =
[
r11e1 |a(2)

2 | · · · |a(2)
n

]
Then find a Q2 ∈ Cm×m that is unitary and so that

Q2Q1A =
[
r11e1 |r12e1 + r22e2 |a(3)

3 | · · · |a(3)
n

]
and so on. The end result will be Q1, . . . , Qn all unitary so that

QnQn−1 . . . Q1A = R

where R ∈ Cm×n is upper triangular. We get the QR factorization by setting

Q = (QnQn−1 . . . Q1)
∗

where we use that the product of unitary matrices is still unitary as is the adjoint
of a unitary matrix. We leave this fact to you to check.

We now discuss how to find such unitary matrices. The first property that we
want is for the Qk to preserve the first k− 1 columns of Qk−1 · · ·Q1A. To do so we
may take Qk to be of the form

Qk =
[
Ik−1 0

0 F

]
where Ik−1 ∈ C(k−1)×(k−1) is the identity and F ∈ C(m−k+1)×(m−k+1). This works
as the first k−1 columns of Qk−1 · · ·Q1A are upper triangular so the F term doesn’t
effect those columns. For Qk to be unitary it must have orthonormal columns and
hence F must have orthonormal columns and so also be unitary.

Let x ∈ C(m− k + 1) denote the vector obtained from a(k)
k ∈ Cm by omitting

the first k − 1 entries. One has

Qka
(k)
k =

[
∗

Fx

]
where ∗ represents m− k − 1 entries. In particular, to to find F (and hence Qk it
suffices to ensure Fx = rkke1.
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As unitary matrices preserve distance, one needs |rkk| = ||x||2 and so we start
by taking rkk = ||x||2. One geometric way to do this would be by rotation. This
is not optimal from a pratical point of view. Instead, reflection is a better choice.
Namely, let v+ = ||x||2e1−x and let E+ = span(v+) and H+ = E⊥

+ . We can then
take F to be reflection across H+. As it will then be a unitary matrix with the
desired mapping property. (Note: this geometric intrepretation works best over the
reals).

Lets figure out the matrix for the reflection. Let Pv+ denote orthogonal pro-
jection onto E+ and PH+ denote orthgonal projection onto H+, i.e they are com-
plementary orthogonal projectors. One verifes then that F = I − 2PE+ is unitary
and has the desired behavior. In other words:

F = I − 2
v+v∗+
||v+||22

Notice there are other choices. For instance one could try and make Fx =
−||x||2e1. Here we let v− = −||x||2e1−x and work as above then we are reflecting
across the hyperplane H− which is orthgonal to v−. Mathematically both choices
are equivalent (i.e. lead to the same answer) however, numerically it turns out to
be better to choose the sign so that Fx is as far as possible from x. It is easy
to see that this is equivalent to choosing rkk = −sign(x1)||x||2 where x1 is first
component of x and sign(x1) = 1 if x1 ≥ 0 and = −1 if x1 < 0. One way to see
why this might be the case is to consider the real case when the dimension is 3 or
larger, i.e. where F ∈ Rn×n for n ≥ 3. When this is the case, if x is near ||x||2e1

and one trys to reflect x to ||x||2e1 a very small perturbation of x could cause F to
change a lot (think what happens if you rotation x around the e1 axis by 90◦–the
reflecting plane also rotates by 90◦). On the other hand in this case reflecting to
−||x||2e1 is not very sensitive to small perturbations (the plane will always be near
the one perpendicular to e1.





CHAPTER 15

Nineteenth and Twentieth Lectures

In these two lectures we look at other notions of length of vectors then the
2-norm. We also discuss notions of length for matrices.

1. Vector Norms

We are familiar with the two norm already.

||v||2 =
√
〈v,v〉 =

√
v∗v

We interpret this as the length of the vector v. Some important properties of the
two norm are that

||v||2 ≥ 0 and ||v||2 = 0 ⇐⇒ v = 0

||λv||2 = |λ|||v||2
||v + w||2 ≤ ||v||2 + ||w||2.

It is sometimes necessary to have other notions of length besides the 2-norm.
To do this we take the three preceeding properties as a definition. We say a function
|| · || : Cm → R is a norm if

||v|| ≥ 0 and ||v|| = 0 ⇐⇒ v = 0

||λv|| = |λ|||v||
||v + w|| ≤ ||v||+ ||w||.

There are many norms. For instance: The p-norms, let x =
∑m

i=1 xiei

||x||p :=

(
m∑

i=1

|xi|p)

)1/p

(1 ≤ p < ∞)

||x||∞ : − = max
1≤i≤m

|xi|

Note that ||x||2 =
√

x∗x which agrees with the usual notion of 2 norm. It is a good
exercise to check that the ∞-norm is a actually a norm. There are lots of other
norms for instance let W ∈ Cm×m be a diagonal matrix with positive entries wii

on the diagonal We can define

||x||W = ||Wx||2 =

√√√√ m∑
1=1

|wiixi|2

Unit ball is then some sort of ellipse.
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2. Induced Matrix Norms

Associated to any pair of norms ||·||(n) on Cn and ||·||(m) on Cm (not necessarily
p-norms) there is an induced matrix norm, || · ||(m,n) on Cm×n This norm measures
the maximum amount of “stretching” (as measured by the norms on Cm and Cn)
that multiplication by A can achieve that is

||A||(m,n) = sup
x∈Cn,x6=0

||Ax||(m)

||x||(n)
= sup

x∈Cn,||x||(n)=1

||Ax||(m)

||x||(n)
.

We leave it as an excercise to see that the two definitions are equivalent. Another
way to think about this is to note that the induced norm is the smallest value C so
that

||Ax||(m) ≤ C||x||(n)

for all x ∈ Cn. In general this definition is hard to use computationally (as for-
mulated it is not an algebraic property). It is very intuitive though and has good
mathematical properties.

We will often consider the case when || · ||(n) = || · ||p and || · ||(m) = || · ||p
(i.e. both norms are p-norms). We then write ||A||p instead of ||A||(m,n). A simple
example. Suppose that m = n and A is a diagonal matrix

A =


a1

a2

...
. . .

am


Then ||A||p = max 1 ≤ i ≤ m|ai|. When p = 2 we can see this geometrically. As A
maps a circle to an ellipse. And the longest vector in the image is the biggest axis.

Another example. Lets compute the 1-norm of a matrix. This turns out to be
easy to determine in terms of the lengths of columns. We calim that with

A =
[
a1 | · · · |an

]
one has

||A||1 = max
1≤j≤n

||aj ||1

To see this we calculate for x =
∑n

j=1 xjej with ||x||1 = 1. In this case we see that∑
j=1 |xj | = 1. Then

||Ax||1 = ||
n∑

j=1

xjaj ||1 ≤
n∑

j=1

||xjaj ||1 =
n∑

j=1

|xj |||aj ||1

But then

≤
(

max
1≤j≤n

||aj ||1
) n∑

j=1

|xj | = max
1≤j≤n

||aj ||1

This implies
||A||1 ≤ max

1≤j≤n
||aj ||1

To get the equality we we suppose the maximum is achieved at the j0 column i.e.

max
1≤j≤n

||aj ||1 = ||aj0 ||1
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then with x0 = ej0 one has ||x0||1 = 1 and ||Ax0||1 = ||aj0 ||1. In a similar fashion
one can show that

||A||∞ = max
1≤i≤m

||a∗i ||1

I.e. is the maximum length of the rows. We leave this as an exercise.
Computing matrix p-norms for 1 < p < ∞ is much harder. We will see a

method to do this for 2 norms (which is the most important). One fact that can
be useful in at least getting a bound on induced norms is a generalization of the
Cauchy-Schwarz inequality called H olders Inequality:

|〈x,y〉| ≤ ||x||p||y||q
provided 1/p + 1/q = 1. When p = q = 2 this is the Cauchy-Schwarz inequality.

3. General Matrix Norms

There are many more norms on matrices then just the induced norms. In
general we say a map || · || : Cm×n → R is a matrix norm if it is just a norm on the
vector space Cmn. That is

||A|| ≤ 0 and ||A|| = 0 ⇐⇒ A = 0

||A + B|| ≤ ||A||+ ||B||
||λA|| = |λ|||A||

It is easy to see any induced norm satisfies these conditions.
One important norm that is not an induced norm is the so called Frobenius

norm. This is given by

||A||F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

=

 n∑
j=1

||aj ||22

1/2

Which is just the 2-norm on Cmn.
One other way to compute this (which is useful from a theoretical point of

view) is
||A||F =

√
tr(A∗A) =

√
tr(AA∗)

Here tr(A) =
∑min(m,n)

i=1 aii. It is a simple exercise to check this.
General matrix norms do not interact with matrix multiplication. However, for

induced norms and the Frobenius norm the norm of the product is controlled by
the product of the norms. Indeed,

||AB||(l,n) ≤ ||A||(l,m)||B||(m,n)

here A ∈ Cl×m and B ∈ Cm×n. To see this just consider

||Ax||(l) ≤ ||A||(l,m)||Bx||(m) ≤ ||A||(l,m)||B||(m,n)||x||(n)

and
||AB||F ≤ ||A||F ||B||F

Final useful property the induced 2-norm and the Frobenius norm is that they
are invariant under pre- or post-multiplication by a unitary matrix. That is let
Q ∈ Cm×m and Q′ ∈ Cn×n both be unitary. Then for A ∈ Cm×n one has

||QA||2 = ||A||2 and ||QA||F = ||A||F
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and
||AQ′||2 = ||A||2 and ||AQ′||F = ||A||F .



CHAPTER 16

Twenty-First Lecture

We introduce the singular value decomposition (SVD).

1. What is the SVD: A Geometric point of view

The SVD is a factorization of an arbitrary matrix that follows from geometric
properties of linear maps. In particular, one tries to understand what the image of
the unit sphere is under multiplication by A. To work geometrically we first focus
on the reals. To that end, let A ∈ Rm×n and consider the unit sphere in Rn i.e.
the vectors x ∈ Rn with ||x||2 = 1. We denote this set by S and the consider it is
AS. Formally, AS = {y ∈ Rm : y = Ax,x ∈ S}. We claim that AS is in general a
hyperellipse (i.e. a higher dimenisonal analog of an ellipse).

For n = m = 2 this means that S is the unit circle and AS should be a rotation
and stretching of some ellipse. Note that we are allowed to stretch so much that
AS is actually a line segment.

To be more precise we suppose that A ∈ Rm×n with m ≥ n and suppose also
that A has full rank (i.e. the columns linearly independent). We define the singular
values σ1, σ2, . . . , σn to be the length of the principal semiaxes of AS. We usually
order these so σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Note that σn > 0 as N(A) = {0}.

We define the left singular vectors of A to be the set of orthogonal unit vectors
{u1, . . . ,un} in Cm so that σiui is a principal semiaxis of AS. In particular σ1u1 is
the largest semiaxis of AS. The right singular vectors are the set of orthgonal unit
vectors {v1, . . . ,vn} in Cn so that Avi = ui. As N(A) = {0} the ui are unique.
We mention that it is not a priori clear that the ui need to be orthgonal, this is
however true and is something we will show.

In terms of matrices:
AV = ÛΣ

Here
V =

[
v1| · · · |vn

]
∈ Cn×n

While
Û =

[
u1| · · · |un

]
∈ Cm×n

and

Σ =

σ1 · · ·
...

. . .
...

σn


This means one has a reduced SVD factorization:

A = ÛΣV ∗.
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As with the QR factorization we can form a full SVD by adding additionally
columns to Û to make a unitary square matrix U . This requires adding additional
zeros to Σ. This gives

A = UΣV ∗

2. What is the SVD: an Algebraic Point of View

While the geometric point of view discussed above is imporatant to understand-
ing the SVD it is hard to make rirgourous (and not easy to compute with). We will
now discuss a more algebraic point of view.

We let m,n now be arbitary integers and let A ∈ Cm×n also be arbitary. A
(full) Singular Value Decomposition of A is a factorization

A = UΣV ∗

Where U ∈ Cm×m is unitary. V ∈ Cn×n is unitary and Σ ∈ Rm×n is diagonal. We
assume in addition that the diagonal elements of Σ are non-negative and ordered
so σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 where p = min(m,n). That is we can write (here we
have m = n):

Σ =

σ1 0 · · · 0

0
. . .

0 · · · 0 σp


Notice that it is then clear that the image of the unit sphere under A is a hyperel-
lipse.

The issue now is to see whether every matrix admits a singular value decom-
position. This turns out to always be the case:

Theorem 2.1. Every matrix A ∈ Cm×n has a singular value decomposition.
Furthermore, the singular values {σj} are uniquely determined and if A is square
and the σj are distinct the ne the left and right singular vectors {uj} and {vj} are
uniquely determined up to (complex) sign.

Proof. The method of proof is an induction on the dimension of A where
what me really mean is an induction on l = min(m,n). Set σ1 = ||A||2. Because
the unit sphere is a compact and the map x → ||Ax||2 is continuous there must be
vectors v′1 ∈ Cn and u′1 ∈ Cm with ||v′1||2 = ||u′1||2 = 1 and so that Av′1 = σ1u′1.
You should take this for granted as it is beyond the scope of this class to discuss it
further. Consider a basis extension of v′1 to

{
v′j
}

an orthonormal basis of Cn and
a basis extension of u′1 to

{
u′j
}

an orthonormal basis of Cm. Let U1 and V1 denote
the matrices with columns

{
v′j
}

and
{
u′j
}
. Then one has

U∗
1 AV1 = S =

[
σ1 w∗

0 B

]
Here B ∈ C(m−1)×(n−1) and w ∈ Cn−1. One estimates∣∣∣∣∣∣∣∣[σ1 w∗

0 B

] [
σ1

w

]∣∣∣∣∣∣∣∣
2

≥ σ2
1 + w∗w = (σ2

1 + w∗w)1/2

∣∣∣∣∣∣∣∣[σ1

w

]∣∣∣∣∣∣∣∣
2

, .

This means σ1 = ||A||2 = ||S||2 ≥ (σ2
1 + w∗w)1/2 which can only occur if w∗w =

||w||22 = 0. In particular,

U∗
1 AV1 =

[
σ1 0
0 B

]
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If n = 1 or m = 1 we are done – this is the base case l = 1. Otherwise B
describes an action on span(v1)⊥. By the induction hypothesis one has an SVD of
B

B = U2Σ2V
∗
2

One verifies that

A = U1

[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]∗
V ∗

1

is an SVD of A. The point is that the first two matrices are unitary so their product
is also unitary, same true for last two and the middle one is diagonal. Notice that
||B||2 ≤ ||A||2 so the singular values are ordered as desired.

To verify uniqueness we note that σ1 is uniquely determined by being equal to
||A||2. Now suppose that in addition to v1 there is another (linearly independent)
vector w with ||w||2 = 1 and ||Aw||2 = σ1. Let

v2 =
Pv⊥1

w

||Pv⊥1
w||2

As ||A||2 = σ1 one has ||Av2||2 ≤ σ1. We claim this is an equality.
To see this we note that as v1 is a left singular vector and v2 is perpendicular

to v1 one has
〈Av1, Av2〉 = 0

To see this we note that A has the SVD A = UΣV ∗ where v1 is the first column
of V . Thus 〈Av1, Av2〉 = 〈A∗Av1,v2〉 = 〈σ2

1v1,v2〉 = 0. Now we can write
w = c1v1 + c2v2 and since v1 and v2 are an orthonormal set |c1|2 + |c2|2 = 1
with both non-zero. Withouth equality the Pythagorean theorem would imply
||Aw||2 < σ1 a contradiction. Thus v2 is a second right singular vector of A
corresponding to σ1. This implies that the singular values would not be distinct
and so cannot occur. The result follows by induction. �





CHAPTER 17

Twenty-Second and Twenty-Third Lectures

We discussed some applications of the SVD.

1. Applications of the SVD

If we know the SVD of a matrix there is lots of useful information we can
deduce about the matrix A. Let A ∈ Cm×n and suppose that A has the SVD

A = UΣV ∗

Let us write p = min(m,n) so p is the number of singular values of A then let r ≤ p
denote the number of non-zero singular values. We denote by σ1 ≥ σ2 ≥ · · · ≥ σr >
0 the non-zero singular values of A and

U =
[
u1| · · · |um

]
and V =

[
v1| · · · |vn

]
the left and right singular vectors.

Theorem 1.1. The rank of A is r the number of non-zero singular values.

Proof. As Σ is diagonal, it is immediate that e1, . . . , er is a basis of R(Σ).
Since U, V are intertible one then has that Uei is a basis of R(A). �

A more refined result is the following:

Theorem 1.2. R(A) = span(u1, . . . ,ur) and N(A) = span(vr+1, . . . ,vn)

Proof. For a diagonal matrix R(Σ) = span(e1, . . . , er) while N(Σ) = span(er+1, . . . , en).
The range of A has a basis Uei = ui for 1 ≤ i ≤ r. Similarly, by solving V ∗x = ei

for r + 1 ≤ i ≤ n one obtains vectors in N(A). We see that the solutions to this
equation is V ei = vi. �

Remark 1.3. Notice that this actually gives an orthonormal basis ofof R(A).
Namely, u1, . . . ,ur. This is NOT necessarily the same as the one obtained via QR
factorization.

As a consequence, if one sets

Û =
[
u1| · · · |ur

]
then one has the matrix P = Û Û∗ giving orthogonal projection onto R(A). In
particular, we can use the SVD to solve least squares problems.

We can also use the SVD to compute 2-norms. Indeed,

Theorem 1.4. ||A||2 = σ1 and ||A||F =
√

σ2
1 + · · ·+ σ2

r .

Proof. To see this we note that both these norms are invariant under pre-
and post- multiplication by unitary maps, so ||A||2 = ||Σ||2 and ||A||F = ||Σ||F .
Since Σ is diagonal it is easy to compute the norms in this case. �
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One very important application is the SVD is that it allows one to get a good
approximations of a given matrix in terms of lower rank matrices. This is important
in trying to understand what the “dominant” part of the matrix is. It can also be
thought of in terms of how much “compression” can be applied to the matrix.

The basic idea is that can express A is the sum of r rank on matrices

A =
r∑

j=1

σjujv∗j

Which follows just by multiplying out the SVD. The point is there are lots of ways
to write A as a sum of rank one matrices for instance

A =
n∑

j=1

aje∗j

or

A =
m∑

i=1

n∑
j=1

aijeie∗j

. However, the sum given by the SVD has the property of having the kth partial sum
capturing as much “energy” of A as possible, that is of being the best approximation
possible in the induced 2-norm or Frobenius norm.

To make this precise

Theorem 1.5. For any k with 0 ≤ k ≤ r define

Ak =
∑

j = 1kσjujv∗j

so Ar = A. Then:

||A−Ak||2 = inf
B∈Cm×nrank(B)≤k

||A−B||2 = σk+1

Here if k = p = min(m,n) we set σk+1 = 0.

Remark 1.6. That is we have that Ak is the best (in terms of the induced 2
norm approximation of A by a rank k matrix).

Proof. Suppose one has a B ∈ Cm×n with rank(B) ≤ k and ||A − B||2 <
||A − Ak||2 = σk+1. By the rank-nullity theorem we see that there is a (n − k)-
dimensional space W in Cn so that for w ∈ W , Bw = 0. (i.e. W ⊂ N(B)). Now
for w ∈ W Aw = (A−B)w and so

||Aw||2 = ||(A−B)w||2 ≤ ||A−B||2||w||2 < σk+1||w||2
Thus W is an (n − k) dimensional subspace with ||Aw||2 < σk+1||w||2. However,
by considering W ′ = span(v1, . . . ,vk+1) one obtains a k + 1 dimensional space (all
vectors are orthogonal hence linearly independent) with ||Aw′||2 ≥ σk+1||w′||2 for
all w′ ∈ W ′. Now W ′ and W must have a non-zero vector in common (otherwise one
would get n+1 linearly independent vectors in Cn. But this is a contradiction. �

Notice when σk+1 is small this means that ||Ax − Akx||2 is small (at least
relative to ||x||2). I.e. mulitplication by A is well approximated by multiplication
by Ak. A similar result also holds for the Frobenius norm i.e.

Theorem 1.7. For any k with 0 ≤ k ≤ r one has

||A−Ak||F = inf
B∈Cm×nrank(B)≤k

||A−B||F =
√

σ2
k+1 + · · ·+ σ2

r
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Notice that when
√

σ2
k+1 + · · ·+ σ2

r is small all of the entries of A are close
to the entries of Ak. That is the array of numbers making up A are all well
approximated by the array of numbers making up Ak. Notice that A takes mn
numbers to determine (i.e. each entry) while Ak takes (m + n + 1)k to represent
(i.e. the left and right singular vector and the singular value). If k is small relative
to p = min(m,n) this is a significant savings.

2. Least squares via SVD: NIC

As we’ve seen the SVD of a matrix A gives a orthonormal basis of R(A). More
than that it gives an approach to solving least squares problems.

Assume that A ∈ Cm×n with m > n. We assume also that N(A) = {0} though
this isn’t neccesary. We want to solve the overdetermined problem

Ax = b

in a least squares sense using the SVD. To that end, let A have reduced SVD

A = Û Σ̂V ∗

with
Û =

[
u1| · · · |un

]
∈ Cm×n

Now orthogonal projection onto R(A) is given by P = Û Û∗. Hence to solve the
equation in the least squares sense it is enough to solve

Ax = Pb

but this leads to
Û Σ̂V ∗x = Û Û∗b

since the columns of Û are linearly independent this is equivalent to solving

Σ̂V ∗x = Û∗b

But this consists just of solving a diagonal system and multiplying by a unitary
matrix.





CHAPTER 18

Twenty-Fourth Lecture

In this lecture we recall some definitions related to the study of eigenvectors
and eigenvalues. This will allows us to compute the SVD of a matrix by solving a
related eigenvalue problem (which is slightly more algebraically tractable).

1. Eigenvalues and Eigenvectors

We review some the very imporant linear concept of eigenvectors and eigenval-
ues. It is helpful to compare and contrast these with singular vectors and singular
values.

Recall that for A ∈ Cm×m we say that λ ∈ C is an eigenvalue and 0 6= v ∈ Cm

is an eigenvector if

Av = λv

that is multiplication of v by A scales v by λ. We call the set of all eigenvalues of
A, Λ(A) the spectrum of A. We point out that if A is singular then 0 ∈ Λ(A) and
any non-zero vector in N(A) is then an eigenvector (with eigenvalue 0).

When everything is real – i.e. both the matrix A and the eigenvalue λ and
eigenvectors x– then one can geometrically understand this as saying A scales x by
|λ| (and possible reverses its direction if λ < 0. However, it is possible for A to be
real and for λ and v to be complex. This contrasts with much of what we have
seen previously and should be kept in mind. For instance the matrix

A =
[
0 −1
1 0

]
which geometrically rotates by 90◦ has eigenvalues ±

√
−1 = ±I. Roughly speaking,

for real matrices, complex eigenvalues correspond geometrically to such a “rotation”
(possible also with a scaling) while real eigenvalues correspond to pure scaling.

How do we find eigenvalues and eigenvectors? We can recast the question
slightly and see that we are trying to find non-trivial solutions to

(A− λI)x = 0

That is we try to find λ so that N(A − λI) 6= {0} and then in this case try and
find elements in the null space. The latter problem is easy (as it is just solving a
linear system) and the difficulty arises mostly in the former. Indeed, determining
the spectrum Λ(A) is an essentially non-linear problem.

Phrase things in a manner that is amenable to algebraic investigation we must
recall the determinant. This is a function:

det : Cm×m → C
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defined by

det
[
a b
c d

]
= ad− bc

and inductively by

detA =
m∑

i=1

(−1)ia1i det A1i.

Here A1i is the matrix in C(m−1)×(m−1) obtained by omitting the first row and
ith column. In other words, we have defined the determinant by expanded along
the first row. The determinant has many properties that allow one to compute it
in other ways. We refer to Strang for instance for more detailed discussion. You
should be able to compute the determinant of small matrices (i.e. 2× 2 and 3× 3).

There is a big theory of determinants. The main property we will need is the
fact that A is non-singular when and only when det(A) 6= 0. Using this fact and
an expansion of the determinant we see that λ ∈ Λ(A) when and only when λ is a
root of the polynomial

pA(z) = det(zI −A) = zm + cm−1z
m−1 + . . . + c0

is a degree m polynomial. We call this the characteristic polynomial of A. The
coefficients ci are determined by the entries of A in an explicit (but non-linear) way.

This is one place that working over C greatly simplifies things. Indeed, the
fundamental theorem of algebra tells us that over C. pA(z) has exactly m roots
(counting multiplicity). That is we can factor

pA(z) = (z − λ1)m1 . . . (z − λk)mk

where k ≤ m, mi ≥ 1 and
∑

i mi = m. We call the value mi = mλi
the alge-

braic multiplicity of the eigenvalue λi. Notice one cannot always produce such a
factorization over R.

For a λ ∈ Λ(A) we say the eigenspace associated λ is the vector space

Eλ = N(λI −A)

this is always a non-empty vector space all the non-zero vectors of Eλ are eigen-
vectors with eigenvalue λ. We let gλ = dimEλ and call this number the geometric
multiplicity of λ. One always has 1 ≤ gλ ≤ mλ (for a proof we refer to Trefethen-
Bau Lecture 24). We say A is non-defective if gλ = mλ for all λ ∈ Λ(A).

The point above is that for a non-defective A ∈ Cm×m one has the dimensions
of the eigenspaces summing up to m (since the algebraic multiplicites have this
property). In this case there is a set x1, . . . ,xm a basis of Cm where each xi is an
eigenvector of A. In particular, there is a non-singular matrix

X =
[
x1| · · · |xm

]
so that

A = XΛX−1

where Λ is diagonal. Notice that unlike the SVD we have only one set of vectors,
they are not neccesarily orthogonal, we must start with a square matrix, the diago-
nal matrix may have complex or negative entries and we aren’t guarenteed of such
a decomposition existing.

One important result we will need is the following:
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Theorem 1.1. Let A ∈ Cm×m be hermitian, i.e. A∗ = A. Then A is non-
defective, all the eigenvalues of A are real and one may choose a orthonormal basis
of eigenvectors.

Corollary 1.2. There is a Q ∈ Cm×m that is unitary so that

A = QΛQ∗

where Λ is diagonal with real entries.

We will prove this later. The point is that hermitian matrices are rather nice
from an eigenvalue point of view.

2. Eigenvalues and the SVD

Despite the differences noted above, there is a clear important relationship
between eigenvalues and singular values. Indeed, for hermitian matrices they are
(practically) the same. One thing that is useful about this is that eigenvalues and
eigenvectors can be found algebraically (though this is not an easy problem for
large matrices). This allows one to find singular values in an algebraic manner:

Theorem 2.1. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the non-zero singular values of
A ∈ Cm×n. Then σ2

i are precisely the non-zero eigenvalues of A∗A and of AA∗ (i.e
these matrices have the same non-zero eigenvalues).

Proof. : Let A have SVD A = UΣV ∗ then

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ = V Σ2V ∗

This says exactly that A∗A has eigenvalues σ2
1 , . . . , σ2

r with associated eigenvectors
v1, . . . ,vr. Of course there may be more eigenvalues but these must all be zero.
Similarly,

AA∗ = (UΣV ∗)(UΣV ∗)∗ = UΣV ∗V Σ∗U∗ = UΣΣ∗U∗ = UΣ2U∗

This says that AA∗ has eigenvalues σ2
1 , . . . , σ2

r with associated eigenvectors u1, . . . ,ur.
As above there may be more eigenvalues but they are zero. �

It is imporatant to note that this given the eigenvalues of A∗A one gets the
singular values by taking the (positive) square root. More over, by taking the
associated eigenvectors of A∗A one gets the right singular vectors of A.





CHAPTER 19

Twenty-Sixth Lectures

In the this lecture we further discuss properties of the Eigenvalues and Eigen-
vectors. In particular, we derive some consequences of the Schur factorization
discussed last lecture. (Note Lecture Twenty-Five was accidentally overwritten).

1. Applications of the Schur Factorization

Recall, last time we showed that:

Theorem 1.1. Every square matrix A ∈ Cm×m has a Schur factorization.
That is

A = QTQ∗

where Q ∈ Cm×m is unitary and T ∈ Cm×m is upper triangular.

Remark 1.2. If T is diagonal then A is diagonizable and is indeed is unitarly
diagonizable.

One nice thing about upper triangular matrices is that the entries on their
diagonal are the eigenvalues:

Theorem 1.3. Let

X =

x11 x12 · · ·
0 x22 · · ·
...

. . .


be upper triangular. Then Λ(X) = {x11, . . . , xmm}.

Proof. Expanding out the determinant one can compute the characteristic
polynomial of X to be

PX(z) = (z − x11) · · · (z − xmm).

One readily sees that the roots are then the elements on the diagonal of X. �

As a consequence, if we can find a Schur factorization of a matrix A we can
find the eigenvalues of a matrix. In order to make this precise idea of a similarity
transformation. This is just another word for changing the basis that one uses to
represent the matrix.

Definition 1.4. We say two matrices A,B ∈ Cm×m are similar if there is a
non-singular matrix X so that the matrix B = X−1AX.

As we’ve seen B is the matrix A in the basis given by the columns of X.
An important fact which follows from properties of the determinant is that if A
and B are similar matrices then PA(z) = PB(z), that is A and B have the same
characteristic polynomial. In particular, A and B have the same eigenvalues with
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the same algebraic multiplicities. In fact, as A and B are similar there is a non-
singular X ∈ Cm×m so that B = X−1AX. Clearly, if v is an eigenvector of A
corresponding to λ ∈ Λ(A) = Λ(B), then X−1v is an eigenvector of B corresponding
to λ. In particular, the geometric multiplicity of λ with respect to A and B are the
same. As mentioned, the proof uses from properties of the determinant. We refer
to Theorem 24.3 of Trefethen and Bau.

A consequence of the Schur factorization is that any matrix A ∈ Cm×m is
similar to an upper triangular matrix T ∈ Cm×m and hence the eigenvalues of A
can be determined from the diagonal of T .

We can also use the Schur factorization to prove things:

Theorem 1.5. Let A ∈ Cm×m be hermitian. Then A has real eigenvalues, is
non-defective and there is an orthonormal set of eigenvectors of A.

Proof. Let A = QTQ∗ be a Schur factorization of A. One has A∗ = A so
QT ∗Q∗ = QTQ∗ that is T ∗ = T . Since T is upper triangular this means that
T is diagonal and all the entries on the diagonal are real. This implies that the
eigenvalues of A are all real as desired. Finally, as T is diagonal, the columns of Q
are the eigenvectors of A. �

Remark 1.6. Another way to say this is that when A is hermitan it is unitarily
diagonizable.

2. Applications of Eigenvalues

Once one knows the eigenvalues and eigenvectors of a matrix A one can tell
a number of useful facts about A right away. However, one can also tell many
useful things about iterates of A that is matrices of the form An (i..e the matrix
obtained by multiplying A by itself n-times). In particular, it is relatively painless
to compute An given such information. Indeed, suppose A is non-defective and so
is diagonizable, i.e. we can write

A = XΛX−1

for some non-singular X and diagonal Λ here

Λ =

λ1 0 · · · 0

0
. . . 0

0 · · · 0 λm


Then it is simple to see that

A2 = XΛX−1XΛX−1 = XΛ2X−1

and so by induction

An = XΛX−1XΛX−1 = XΛnX−1

Notice that knowing the SVD does not allow for such a nice formula. In practice,
the SVD gives alot of information about the matrix A, but tells one little about
iterates of A.
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Another thing we can do is take square-roots of (some) matrices. Consider first
a diagonal matix

A =


a1 0 · · · 0

0
. . . 0

...
0 · · · 0 am


We want to find a B so that B2 = A. For simplicity, we assume ai ≥ 0. Then we
can take

B =


√

a1 0 · · · 0

0
. . . 0

...
0 · · · 0

√
am


and B2 = A and so we write B =

√
A in this case. More generally, we say a

hermitian matrix A is positive semi-definite if all the eigenvalues of A are non-
negative. This is equivalent to 〈Ax,x〉 ≥ 0 for all x ∈ Cm (A still hermitian). Then
we can check that there is a hermitian matrix B with B2 = A. Indeed, as A is
hermitan it is (unitarily) diagonizable, so

A = QΛQ∗

As all the eigenvalues of A are non-negative all the entries of Λ are non-negative,
so we just set

B = Q
√

ΛQ∗





CHAPTER 20

Twenty-Seventh Lecture

We discuss here iterative methods of determining eigenvalues and eigenvectors.
As previously mentioned finding eigenvalues is not an easy procedure. This

is because finding the roots of the characteristic polynomial is a non-linear prob-
lem, and is computationally difficult. Thus, we will instead discuss some other
approaches. The methods we discuss are not the ones used in practice, but are
related and will give some insight into how one would numerically find eigenvalues.

It turns out to be the case that the discussion is vastly simplified if we restrict
attention to real symmetric matrices. I.e. A ∈ Rm×m and A∗ = A> = A. Notice,
the eigenvalues (and hence also eigenvectors) are real. To fix notation for this
lecture we let λ1, . . . , λm be the eigenvectors of A and q1, . . . ,qm the associated
eigenvalues normalize so ||qj ||2 = 1 (so they form an orthonormal basis of Rm. We
also order the eigenvalus so that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|.

1. Rayleigh Quotient

One way to think about an eigenvalues is as follows: Fix a vector x ∈ Rm. We
seek the scalar α ∈ R that makes x an as close as possible to beign an eigenvector.
I.e. we want to minimize

||Ax− αx||2
Of course if x is actually an eigenvector this is minimized when α is actually the
associated eigenvalue as the value is zero.

We can re-formulate this question as follows: We are trying to solve the overde-
termined system of equations :

xα = Ax
in the one unknown α in the sense of least squares. To make this easier to parse,
let us think of x as an m× 1 matrix and write it as X. Then we are solving

X
[
α
]

= Ax

in the sense of least squares.
To do this, we need to find PX the projector onto R(X) = span(x). This is

given by

P =
xx∗

||x||22
=

xx>

||x||22
Hence we may take

αx = PAx =
x>Ax
||x||2

x =
〈Ax,x〉
||x||22

x

This value α is called the Rayleigh Quotient and denote it by r(x). So

r(x) =
〈Ax,x〉
||x||22
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Notice that when x = qj is an eigenvector, r(x) = λj the associated eigenvalue.
We may think of

r : Rm → R
as a function of several variables. It is not hard to see that away from x = 0 this is
a smooth function (i.e. all partial derivatives exist and are continuous). A straight
forward computation gives

∇r(x) =
2

||x||22
(Ax− r(x)x)

(here we have taken the gradient of r). In particular, the critical values of r are
precisely the eigenvalues of A. While the critical points are the eigenvectors. To
make this clearer one usually restricts r to the sphere ||x||2 = 1.

How does this help us? Well we always know that the maximum of r and
the minimum of r on the sphere ||x||2 = 1 are critical points of r. In particular,
these give us eigenvalues. This should remind you of the SVD. This approach (i.e.
looking for the maximum and minimum) won’t help us directly as it is not very
computational. However, it does give us some useful information. Namely, notice
that when x is an eigenvector, r(x) gives the associated eigenvalue. Moreover, if
we have reason to believe that x is near to an eigenvector qj then r(x) is near λj .
Indeed, we Taylor’s theorem gives that the following estimate holds:

(1.1) r(x)− r(qj) = O(||x− qj ||22),x → qj

Here we used that ∇r vanishes at x = qj . Notice that for ε > 0 small that ε2 is
much smaller. In other words, if x is close to qj then r(x) is very close to λj .

2. Power Iteration

We introduce now a method called power iteration that finds the largest eigen-
value and eigenvector of matrices A under certain conditions on A. The basic idea
is that repeated multplication by A tends to amplify the eigenvector correspond-
ing to the largest eigenvalue more than the other eigenvectors. That is if we start
with an appropriate v then consider v(k) = Akv, if one expresses v in the basis of
eigenvectors {q1, . . . ,qm} the coefficient in front of q1 should be much larger than
all the other coefficients.

More precisely, start with a (randomly choosen) vector v(0) with ||v(0)||2 = 1.
And consider the iterative construction:

v(k+1) =
Av(k)

||Av(k)||2
, λ(k+1) = r(v(k+1))

Then in good circumstances one has that v(k) → q1 and λ(k) → λ1.

Theorem 2.1. Suppose that |λ1| > |λ2| ≥ . . . |λm| ≥ 0 and 〈q1,v(0)〉 6= 0 then
the iterates above satisfy

||v(k) − (±q1)||2 = O(
∣∣∣∣λ2

λ1

∣∣∣∣k), |λ(k) − λ1| = O(
∣∣∣∣λ2

λ1

∣∣∣∣2k

)

Remark 2.2. The signs in front of the q1 are an unfortunate technical annoy-
ance. If λ1 > 0 they may always be taken to be positive, while if λ1 < 0 they
alternate in k.
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Proof. We note that as the qi form an orthonormal basis we can write v(0)

as

v(0) = a1q1 + a2q2 + · · ·+ amqm.

Notice that a1 = 〈v(0),q1〉 6= 0. Then (here ck is a normalizing term):

v(k) = ckAkv(0)

= ck(a1λ
k
1q1 + . . . + amλk

mqm)

= ckλk
1

(
a1q1 + a2(λ2/λ1)kq2 + . . . + am(λm/λ1)kqm

)
Tthe first estimate follows from this by noting that for j > 1,

(
λj

λ1

)k

→ 0 as k →∞
at the desired rate. The second follows from this and the quadratic estimate (1.1).
When λ1 > 0 the signs are all positive if λ1 < 0 they alternate. �

Notice that as long as the largest (in magnituded) two eigenvalues have distinct
magnitudes (not something one know a priori–a serious drawback) then the power
iterates converge to the largest eigenvalue at a rate determined by the ratio between
the two eigenvalues. This illustrates some of the drawbacks of this method.

Again the main idea of the method is that successive multiplications by A tends
to amplify the part of v(0) that corresponds the eigenvector q1 (i.e. the eigenvector
associated to λ1) much more than an other part of v(0). In particular, after many
iterations “most” of Akv(0) is in the direction of q1.

3. Inverse Iteration:NIC

As we saw above there are two major drawbacks to power iteration. First it
only finds the largest eigenvalue. Second if there is not a large amount of separation
between the largest two eigenvalues the convergence is slow. A way to overcome
the first issue is to consider the matrix

A− µI

for some µ ∈ R to be specified. The important point is that Λ(A−µI) = Λ(A)−µ.
I.e. the eigenvalues are λi − µ. If µ is not an eigenvalue, then it is straightforward
to see that A− µI is invertible and the eigenvalues of

(A− µI)−1

are (λi − µ)−1. That is if µ is near to the eigenvalue λi0 then (A − µI)−1 has a
very large eigenvalue given by (λi0 −µ)−1. If we then use this with power iteration
it converges to λi0 and the associated eigenvector qi0 . That is we can find all the
eigenvalues, at least as long as we start near enougth.

This procedure is known as inverse iteration. The basic idea is the start with
a vector v(0) with ||v(0)||2 = 1. Now iteratively do the following procedure:

(1) Solve for (A− µI)w = v(k).
(2) Set v(k+1) = w

||w||2
(3) Set λ(k+1) = r(v(k+1)).

In ideal situations one then gets convergence to an eigenvalue.
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Theorem 3.1. Suppose that λi0 is the closes eigenvalue of A to µ and λi1 is
the second closest and that |µ − λi0 | < |µ − λi1 | ≤ |µ − λj | for j 6= i0. Further
suppose that 〈v(0),qi0〉 6= 0. Then the iterates of inverse iteration satisfy

||v(k) − (±qi0)||2 = O

(∣∣∣∣µ− λi0

µ− λi1

∣∣∣∣k
)

, |λ(k) − λi0 | = O

(∣∣∣∣µ− λi0

µ− λi1

∣∣∣∣2k
)

as k →∞.

Notice this is essentially the same rate of growth as before, but it does allow one
to find different eigenvalues. There is still an issue when one has nearby eigenvalues.

One way to think of the inverse iteration is that it is a way to transform an
eigenvalue estimate to an eigenvector estimate. I.e. if we you have a pretty good
idea of what one of the eigenvalues is, application of inverse iteration gives you
a much better idea, as well as giving an associated eigenvector. This contrasts
with (1.1) where having a vector x that is near to an eigenvector means that r(x)
is quite close to an eigenvalue. By a clever combination of inverse iteration with
the Rayleigh quotient one obtains a algorithm that converges quite rapidly to an
eigenvalue, provided one starts near enough.



CHAPTER 21

Twenty-Eighth Lecture

In the last two lectures we will talk about some more advanced topics relating
to methods in numerical linear algebra. I will focus on algorithm called Conjugate
Gradients. This is covered in Lec. 32 and 38 of T-B.

1. Iterative Methods

We discussed last time a (primitive) method of finding the largest eigenvalue of
certain types of matrices via iteration. This week we will see an iterative method
for solving systems of equations. You might ask why bother as we have a perfectly
good algorithm in Gaussian elimination. The most fundamental reason is speed.
For an m×m matrix Gaussian elimination takes O(m3) steps. This is too slow in
practice once m gets large.

In practice it is often the case that such large matrices are very “sparse” that
is they have a lot of zero entries. In this case the structure of the matrix suggests
that one should not need to do so much work. Gaussian elimination cannot take
advantage of the sparseness while iterative methods such as conjugate gradients
can.

The key is that an iterative method just needs a “black-box” that given x as an
input, outputs Ax. The point is it may be possible to program such a black-box to
be faster than expected (if the matrix is sparse for instance). In contrast Gaussian
elimination requires one to work directly with A where no such speed up is possible.

2. Krylov Spaces and solutions to linear systems

We introduce some notation in order to discuss these iterative algorithm. Fix
A ∈ Cm×m a square matrix and b ∈ Cm a vector. We will consider the Krylov
sequence, which is

b, Ab, A2b, . . . , Akb, . . .

and the Krylov subspaces

Kn = span(b, Ab, A2b, . . . , An−1b).

That is the span of the first n vectors in the Krylov sequence. We note the easy to
check fact that:

Kn ⊂ Kn+1

We also introduce the Krylov Matrices

Kn =
[
b| Ab| · · · |An−1b

]
∈ Cm×n

So that the column space of Kn is Kn. We emphasize that our “Black-box” can be
used to find the Krylov sequence (and hence Kn and Kn as A2b = A(A(b)), . . . ,.
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We now discuss a general framework using the Krylov spaces for trying to solve
systems of equations iteratively. The exposition is significantly simplified if we
assume the system always has a unique solution. That is are trying to then solve:

Ax = b

with A non-singular. In otherwords, we are seeking a way to compute:

x∗ = A−1b.

We emphasize that theoretically we know x∗ exists, the issue is to numerically
compute it in an efficient manner.

In order to motivate our approach we note the following fact:

Lemma 2.1. For A and b as above and

Kn = span(b, Ab, . . . , An−1b) ⊂ Cm

the associated Krylov subspaces, if for some k, dimKk < k then x∗ ∈ Kk

Proof. We note if b = 0 then x∗ = 0 is in every Krylov subspace so we may
assume b 6= 0 and hence (as A is non-singular) Aib 6= 0 for all i. If dimKk < k
then there is a linear dependence amongst the Aib that is

l∑
i=1

ciA
jib = 0

where here l ≤ k and we take ci 6= 0 and order the terms so that 0 ≤ j1 < j2 <
· · · < jl < k. But then we have

x∗ = A−1b =
1
c1

l∑
i=2

ciA
ji−j1−1b ∈ Kk

as k > ji − j1 − 1 ≥ 0. �

As a consequence if we look in a big enough Krylov subspace we will find x∗

Corollary 2.2. For A and b as above and

Kn = span(b, Ab, . . . , An−1b) ⊂ Cm

the associated Krylov subspaces, x∗ ∈ Km.

Proof. If dimKm < m then the result follows by the preceding Lemma. If
dimKm ≥ m then Km = Cm and so x∗ must be in this space. �

Our method for computing x∗ method will be as follows: we try and find a
sequence xn ∈ Kn so that the error term En = x∗ − xn are as small as possible.
By the above we see that Em = 0, but the hope is that for n << m one has Ei

very small and so in only a few steps we’ve computed a vector very close to the
true solution. Surprisingly, in practice this is often the case.

Notice we didn’t specify with what norm we were measuring the size of the
error term, nor have we indicated how to find the xn. This differs in different
algorithms and is somewhat of a subtle point. One naive approach would be to try
and minimize the 2-norm of En and then find xn by orthogonal projection (of x∗)
onto Kn. However, since we don’t know the value of x∗ (it is what we are trying
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to compute) this method seems doomed to fail. Indeed, in practice it is better to
look at the following “residual term”

rn = AEn = b−Axn

as this does not depend on knowing x∗.





CHAPTER 22

Twenth-Ninth Lecture

We now discuss a very neat way of minimizing the error term, the Method of
Conjugate Gradients.

1. Conjugate Gradients

The method of Conjugate Gradients requires that we try and solve systems

Ax = b

that are of a somewhat special form. Namely, we assume that A ∈ Rm×m and
A = A> is real and symmetric. We must also assume that A is positive definite.
That is, when v 6= 0 then

〈v, Av〉 > 0

This corresponds to A have strictly positive eigenvalues. That is, λ ∈ Λ(A) implies
λ > 0. Notice a positive matrix is automatically non-singular.

The positivity (and symmetry) of A allows us to define a norm:

||x||A =
√
〈x, Ax〉

Which is a norm on Rm. Notice that since A has positive eigenvalues, there is a
symmetric B so that B2 = A. In particular, we have that

〈x, Ax〉 = 〈x, B2x〉 = 〈x, B>Bx〉 = 〈Bx, Bx〉 = ||Bx||22
.

The method of conjugate gradients does the following: It constructs iteratively
the vector xn ∈ Kn with the property that if En = x∗−xn then ||En||A is minimum.
In other words, it finds the vector xn in the nth Krylov subspace that is closest to
the actual answer (in the norm || · ||A). As discussed above, we use the || · ||A norm
so that the minimizer can be found with out knowing the value of x∗.

Let us first give the algorithm and then discuss its properties: We start by
setting x0 = 0, r0 = b,v0 = r0. Now do the following for n = 1, 2, 3, . . .:

αn :=
||rn−1||22
||vn−1||2A

xn := xn−1 + αnvn−1

rn := rn−1 − αnAvn−1

βn :=
||rn||22
||rn−1||22

vn := rn + βnvn−1

The algorithm is terminated if rn = 0 as at that step we will have xn = x∗.
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Here xn is the approximate solution and rn is the residual term. We refer to
the numbers αn as the “step length” , the vectors vn as the “search direction”
and βn as the “improvement”. Notice that one avoids dividing by zero as long as
rn−1 6= 0. But rn−1 = 0 means we have found the solution at the n− 1 step so the
algorithm would have to terminate.

We claim (and will prove) that for this algorithm one always has that xn ∈ Kn

and that ||En||A < ||x∗ − y||A for any y ∈ Kn with y 6= xn. In other words, this
simple procedure allows us to find the minimizerer (in || · ||A norm) of the errors
inside each Krylov subspace.

Let us now begin to justify why the Conjugate gradient method works we will
do so by proving some useful facts:

Lemma 1.1. As long as rn−1 6= 0 the vectors in the Conjugate Gradient algo-
rithm satisfy

Kn := span(b, Ab, . . . , An−1b)

= span(x1, . . . ,xn)

= span(r0, . . . , rn−1)

= span(v0, . . . ,vn−1)

In addition the residuals are orthogonal

〈rn, rj〉 = 0 (j < n)

and the search directions are “A-orthogonal”

〈vn, Avj〉 = 0 (j < n)

Proof. The proof is by induction on n. For n = 1 the results are all self-
evident so we treat only the case that n − 1 → n. Let us first show the spanning
properties. We first note that as xn := xn−1 + αnvn−1 we have by the induction
hyptothesis that

xn ∈ span(v0, . . . ,vn−1)
and

vn−1 ∈ span(x1, . . . ,xn)
so

span(x1, . . . ,xn) = span(v0, . . . ,vn−1)
In a similar manner, from vn−1 := rn−1 + βn−1vn−2 and the induction hypothesis
see that

span(v0, . . . ,vn−1) = span(r1, . . . , rn−1)
Finally, from rn−1 = rn−2 − αn−1Avn−2 and the induction hypothesis we see that

span(r1, . . . , rn−1) = span(b, . . . , An−1b)

Notice in all cases we have used that αn and βn are non-zero.
To check the orthogonality condition we use that rn = rn−1 − αnAvn−1 So

〈rn, rj〉 = 〈rn−1 − αnAvn−1, rj〉
= 〈rn−1, rj〉 − αn〈vn−1, Arj〉
= 〈rn−1, rj〉 − αn〈vn−1, Avj − βjAvj−1〉
= 〈rn−1, rj〉 − αn〈vn−1, Avj〉 − αnβj〈rn−1, Avj−1〉
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If j < n − 1 then the right hand side is zero by induction. If j = n − 1 then the
last term is zero by induction and

〈rn−1, rj〉 − αn〈vn−1, Avj〉 = ||rn−1||22 −
||rn−1||22
||vn−1||2A

∗ 〈vn−1, Avn−1〉 = 0

To prove the final “A-orthogonality”. We use that vn = rn + βnvn−1 to see that

〈vn, Avj〉 = 〈rn, Avj〉+ βn〈vn−1, Avj〉

=
1

αj+1
〈rn, rj〉 −

1
αj+1

〈rn, rj+1〉+ βn〈vn−1, Avj〉

If j < n−1 the right hand side is zero by induction (and by the above). If j = n−1
then the first term is zero and one computes from the values of αn and βn that the
second two terms cancel. �

Remark 1.2. The orthogonality and the spanning properties imply that rn is
orthogonal ot Kn.

Lemma 1.3. In the CG iteration AEn = rn.

Proof. We prove by induction. E0 = x∗ − x0 = x∗ and so AE0 = b = r0.
More generally,

rn = rn−1 − αnAvn−1

= AEn−1x∗ − αnAvn−1

= A(x∗ − xn−1 − αnAvn−1)

= A(x∗ − (xn−1 + αnAvn−1))

= A(x∗ − xn

= AEn

�

2. Optimality

We can now show the claim that conjugate gradients minimizes the required
norms:

Theorem 2.1. Let the CG iteration be applied to a symmetric positive definite
real matrix problem Ax = b. If the interation hasn’t converged, ie. rn−1 6= 0, then
xn is the unique point in Kn so that

||En||A = ||x∗ − xn||A < ||x∗ − y||A
for any y ∈ Kn with y 6= xn Moreover, the convergence is monotone in that

||En||A ≤ ||En−1||A.

Proof. By the previous Lemma one has xn ∈ Kn. As we saw above AEn = rn.
Hence for any point y ∈ Kn we can write y = xn −∆x ∈ Kn so the error of y is
E = x∗ − y = En + ∆x. We compute

||E||2A = 〈En + ∆x, A(En + ∆x)

= 〈En, AEn〉+ 〈∆x, A(∆x)〉+ 2〈En, A(∆x〉.
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By symmetry one has 〈En, A(∆x〉 = 〈AEn,∆x〉 = 〈rn,∆x〉 = 0. By the positive
definite property of A, one has 〈∆x, A(∆x)〉 ≥ 0 with equality when only when
∆x = 0. This implies that

||E||A ≥ ||En||A
with equality only when ∆x = 0. The monotonicity follows from this fact and the
fact that Kn−1 ⊂ Kn. �

Where does Conjugate Gradients come from? The answer comes from a mini-
mization problem. Recall we to find xn we are minimizing

||E||2A = ||x∗ − x||2A
with x ∈ Kn. The problem is that computing this function depends on knowing
x∗! The insight one needs to have is that if we take the function

φ : Rm → R

x 7→ 1
2
〈x, Ax〉 − 〈x,b〉

then ||E||2A = ||x∗−x||2A = 2φ(x) + 〈x∗,b〉 Notice that the second term is constant
(i.e. independent of x) so won’t effect the minimization. I.e. the vector for which
φ is minimized is the same vector for which ||E||A is minimized.

That there is such a nice iteration scheme for finding the minimum of φ is a
non-obvious fact.


