Mathematic 108, Summer 2019: Assignment #1

Due: Tuesday, July 9th

Instructions: Please ensure your name appears on the first page. Also that your answers are legible and all pages are stapled. Page numbers refer to the course text.

Problem #1. Determine the (largest) domain and range of the function given by $f(x) = \frac{x}{\sqrt{4-x^2}}$. Sketch the graph of this function.

Problem #2. Determine the (largest) domain of the function given by $f(x) = \frac{1}{1 + \tan^2(x)}$. Explain why this is *not* the same function as $g(x) = \cos^2(x)$.

Problem #3. Ann leaves Baltimore at 6:00AM and drives at a constant speed south along I-95. She passes Washington, DC, which is 40 mi from Baltimore, at 7:30AM

- a) Express the distance traveled (in miles) in terms of the time traveled (in hours).
- b) Express the distance traveled (in kilometers) in terms of the time of day (in hours).
- c) How are these two functions related?

Problem #4. Let $f(x) = \frac{1}{x}$ and

$$g(x) = \begin{cases} 0 & 1 \le x \le 2\\ -\frac{1}{x} & x > 2. \end{cases}$$

Determine the formulas for the following functions and their domains:

- a) f + g. b) $f \circ g$.
- c) $g \circ f$.

Problem #5. Express the following functions in the form $f \circ g$ where f is a rational function and g is a trigonometric function:

a) $u(t) = \frac{\cos^2(t)}{1 - \cos(t)}$. b) $w(t) = \frac{\cos(t)}{\sin^4(t)}$.

Problem #6. Determine the largest value L so that the $f(x) = (x-2)^2 + 2$ is one-to-one on the interval (-L, L). Find the formula for f^{-1} and its domain.

Problem #7. Find a formula for f^{-1} and determine its domain when $f(x) = 1 + \sqrt{1 - 2x}$.

Problem #8. Simplify $\cos(2 \arccos(2x))$.

Problem #9. Evaluate the limit, if it exists.

a)
$$\lim_{x \to -1} \frac{x+1}{x^3+1}$$
.
b) $\lim_{x \to 1} (x^2 - 1)(x^2 + 1)$.
c) $\lim_{x \to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{|x|}$.

Problem #10. Determine the following infinite limits

a)
$$\lim_{x \to 0^+} \ln\left(\frac{1}{x}\right).$$

b)
$$\lim_{x \to 0^+} \left(\frac{1}{\sqrt{x}} - \ln(x)\right)$$

c)
$$\lim_{x \to \left(-\frac{\pi}{2}\right)^-} x \tan(x)$$

Problem #11. Let $f(x) = \begin{cases} 2 - x^2 - c & x < -1 \\ \sqrt{x+c} & x > -1 \\ 10 & x = -1. \end{cases}$ Determine values c so that $\lim_{x \to -1} f(x)$ exists.

Problem #12. Suppose that f(x) is defined near x = -1 and satisfies $-x^4 - x^2 + 4 \le f(x) \le 4 + 2x^2$. Calculate $\lim_{x \to -1} f(x)$.

Problem #13. Use the ϵ, δ definition of limit to show that $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$.

Problem #14. Using limit laws, show that the following functions are continuous at the given value a.

a) $f(x) = \frac{x^3 - 1}{x + 1}, a = 1.$ b) $f(x) = \frac{\sqrt{x^2 + 4} + 2}{x + 2}, a = 0.$

Problem #15. Use continuity to evaluate the following limits.

a) $\lim_{x\to 0} \tan(x^2 - x)$. b) $\lim_{x\to 1} \ln\left(\frac{3-x}{x^2+1}\right)$

Problem #16. Explain why the function is discontinuous at the given a and determine, if possible, the type of the discontinuity.

a)
$$a = -\frac{1}{2}$$
 and $f(x) = \frac{2x-1}{(4x+2)^2}$.
b) $a = -1$ and $f(x) = \begin{cases} \frac{x+1}{1-\sqrt{-x}} & x < 0, x \neq -1 \\ 0 & x = -1. \end{cases}$
c) $a = 0$ and $f(x) = \begin{cases} \cos(x) & x < 0 \\ -\cos(x) & x \ge 0. \end{cases}$

Problem #17. Let f be continuous on [2,5]. If f is zero only at x = 5 and f(3) = -3, then can f(4) = 2?

Problem #18. Determine value(s) c so that $f(x) = \begin{cases} -\frac{9}{x^2+c} & -3 \le x \le 2\\ 2x-c & 2 < x < 5. \end{cases}$ is continuous on (-3,5).

Problem #19. Show that the function $f(x) = \begin{cases} x \sin(\frac{1}{x^2}) & x \neq 0 \\ 0 & x = 0. \end{cases}$ is continuous on $(-\infty, \infty)$.

Problem #20. Find the limit or explain why it doesn't exist.

a) $\lim_{x \to -\infty} \frac{3x^3 + x^2 - x + 1}{x^3 - 1}$ b) $\lim_{x \to 0^-} \tan^{-1}\left(\frac{1}{x}\right)$

Suggested Book Problems (not to be handed in).

- a) Section 1.1: # 4, # 14
 b) Section 1.2: # 10
 c) Section 1.3: # 4, # 32, # 34
 d) Section 1.4: # 20
 e) Section 1.5: # 10, # 30, # 56.
 f) Section 2.1: # 2
 g) Section 2.2: # 4, # 16
 h) Section 2.3: #2, #6, # 10, # 14, # 50.
 i) Section 2.4: #2, #38
 j) Section 2.5: #4, #24, # 56
- k) Section 2.6: #42, #58