Mathematic 108, Summer 2019: Assignment #2

Due: Tuesday, July 16th

Instructions: Please ensure your name appears on the first page. Also that your answers are legible and all pages are stapled. Page numbers refer to the course text.

Problem #1. Consider the function $f(x) = \begin{cases} 2(x-1)^2 - 1 & x \le 1 \\ x^3 & 2 \le x < 3 \end{cases}$

- a) Determine the equation of the secant line between (0, f(0)) and (2, f(2)).
- b) Let m(x) be function whose value at x is the slope of the secant line between (0, f(0)) and (x, f(x)). Determine m(x) and its domain.
- c) Calculate $\lim_{x\to 0} m(x)$.

Problem #2. Calculate f'(0) for $f(x) = \begin{cases} 3 + x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 3 & x = 0. \end{cases}$

Problem #3. Let $q(x) = x^{2/3}$.

- a) Show that q'(0) doesn't exist.
- b) Calculate g'(a) for $a \neq 0$.

Problem #4. Find the equation of the tangent line and of the normal line to the curve at the given point.

a) $y = 2x - x^2 + e^x$ at (0, 1). b) $y = \sqrt{x} - \frac{1}{\sqrt{x}}$ at (1,0).

Problem #5. Find constants a, b so that $f(x) = x^2 + ax + b$ is tangent to the line y = 2x - 3 at (2, 1).

Problem #6. Let $g(x) = xe^x$. Compute all $g^{(n)}(x)$ where n is a positive integer.

Problem #7. Suppose f(x) is a differentiable function. Determine an expression for the derivative of the following functions

a) $g(x) = \frac{f(x)}{x}$. b) $g(x) = \frac{1+f(x)}{1-f(x)}$. c) $g(x) = x(f(x))^2$

Problem #8. Suppose that g is differentiable.

- a) Use the Quotient Rule to show d/dx (1/g(x)) = -g'(x)/g(x)^2.
 b) Use the Chain Rule and the fact that d/dx (1/x) = -1/x² to show the same thing.

Determine the constants m and b so that the function $f(x) = \begin{cases} xe^{1-x^2} & x \le 1 \\ mx+b & x > 1 \end{cases}$ is Problem #9. differentiable on $(-\infty,\infty)$.

Problem #10. Let $h(x) = \sqrt{25 - 3f(x)}$ were f(1) = 3 and f'(1) = 4 determine h'(1).

Problem #11. Determine the value(s) of α and β so that $f(x) = e^{\alpha x} \cos(\beta x)$ satisfies $f''(x) - 2f'(x) + \frac{1}{2} \cos(\beta x)$ 2f(x) = 0 for all x. That is, so f is a solution to the differential equation y'' - 2y' + 2y = 0.

Problem #12. Compute the following limits

a) $\lim_{x \to 0} \frac{\sin(x)}{\sin(\pi x)}.$ b) $\lim_{x \to 0} \frac{\sin(x^2)}{x}.$ c) $\lim_{x \to 0} \frac{\cos(x)-1}{\sin(x)}.$

Problem #13. Find $\frac{dy}{dx}$ by implicit differentiation

a) $xe^{-y} = x^2 - y$. b) $x\cos(y) + y = -1$.

Problem #14. Determine the equation of the tangent line to the curve $\cos(y) + \sin(y) = x$ at $(-1, 3\pi)$.

Problem #15. Compute $y'' = \frac{d^2y}{dx^2}$ by implicit differentiation when $x^2 - y^2 = 1$.

Problem #16. Suppose f(x) satisfies $f(f(x)) = \frac{1}{2} (f(x)^2 + x^4)$ and f(1) = 1. What are the possible values of f'(1)?

Problem #17. Suppose x > 0 and $x^y = y$.

- a) Compute $\frac{dy}{dx}$.
- b) Determine the tangent at (1, 1).

Problem #18. Differentiate the following functions

a) $f(x) = \sqrt{1 + (\ln(x))^2}$. b) $f(x) = \cos(\ln |x|)$. c) $f(x) = (\sqrt{x})^{x-1}$.

Problem #19. An ant is crawling along a hyperbola $x^2 - y^2 = 3$. As it reaches the point (2, -1) its x coordinate increases at a rate of 5. Determine the rate of change of the y coordinate when this occurs.

Problem #20. Linearize the given function at the given value and use it approximate the given number.

- a) Linearize $f(x) = x^4$ at a = 2. Approximate f(2.02).
- b) Linearize $f(x) = \sqrt{x}$ at a = 36. Approximate f(36.1).

Suggested Book Problems (not to be handed in).

- a) Section 2.7: #8, # 38
- b) Section 2.8: #22, #26, #42
- c) Section 3.1: # 56, # 72
- d) Section 3.2: #18, #46, #50
- e) Section 3.3: # 12, # 18
- f) Section 3.4: # 2, # 36, # 64
- g) Section 3.5: #56
- h) Section 3.6: #28, #34
- i) Section 3.9: #18, #20, #22, #28
- j) Section 3.10: #4, #14, #30