## Mathematic 108, Summer 2019: Assignment \#2

Due: Tuesday, July 16th
Instructions: Please ensure your name appears on the first page. Also that your answers are legible and all pages are stapled. Page numbers refer to the course text.

Problem \#1. Consider the function $f(x)=\left\{\begin{array}{cc}2(x-1)^{2}-1 & x \leq 1 \\ x^{3} & 2 \leq x<3 .\end{array}\right.$
a) Determine the equation of the secant line between $(0, f(0))$ and $(2, f(2))$.
b) Let $m(x)$ be function whose value at $x$ is the slope of the secant line between $(0, f(0))$ and $(x, f(x))$. Determine $m(x)$ and its domain.
c) Calculate $\lim _{x \rightarrow 0} m(x)$.

Problem \#2. Calculate $f^{\prime}(0)$ for $f(x)=\left\{\begin{array}{cc}3+x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 3 & x=0 .\end{array}\right.$
Problem \#3. Let $g(x)=x^{2 / 3}$.
a) Show that $g^{\prime}(0)$ doesn't exist.
b) Calculate $g^{\prime}(a)$ for $a \neq 0$.

Problem \#4. Find the equation of the tangent line and of the normal line to the curve at the given point.
a) $y=2 x-x^{2}+e^{x}$ at $(0,1)$.
b) $y=\sqrt{x}-\frac{1}{\sqrt{x}}$ at $(1,0)$.

Problem \#5. Find constants $a, b$ so that $f(x)=x^{2}+a x+b$ is tangent to the line $y=2 x-3$ at $(2,1)$.
Problem \#6. Let $g(x)=x e^{x}$. Compute all $g^{(n)}(x)$ where $n$ is a positive integer.
Problem \#7. Suppose $f(x)$ is a differentiable function. Determine an expression for the derivative of the following functions
a) $g(x)=\frac{f(x)}{x}$.
b) $g(x)=\frac{1+f(x)}{1-f(x)}$.
c) $g(x)=x(f(x))^{2}$.

Problem \#8. Suppose that $g$ is differentiable.
a) Use the Quotient Rule to show $\frac{d}{d x}\left(\frac{1}{g(x)}\right)=-\frac{g^{\prime}(x)}{g(x)^{2}}$.
b) Use the Chain Rule and the fact that $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$ to show the same thing.

Problem \#9. Determine the constants $m$ and $b$ so that the function $f(x)=\left\{\begin{array}{ll}x e^{1-x^{2}} & x \leq 1 \\ m x+b & x>1\end{array}\right.$ is differentiable on $(-\infty, \infty)$.

Problem \#10. Let $h(x)=\sqrt{25-3 f(x)}$ were $f(1)=3$ and $f^{\prime}(1)=4$ determine $h^{\prime}(1)$.
Problem \#11. Determine the value(s) of $\alpha$ and $\beta$ so that $f(x)=e^{\alpha x} \cos (\beta x)$ satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+$ $2 f(x)=0$ for all $x$. That is, so $f$ is a solution to the differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=0$.

Problem \#12. Compute the following limits
a) $\lim _{x \rightarrow 0} \frac{\sin (x)}{\sin (\pi x)}$.
b) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x}$.
c) $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{\sin (x)}$.

Problem \#13. Find $\frac{d y}{d x}$ by implicit differentiation
a) $x e^{-y}=x^{2}-y$.
b) $x \cos (y)+y=-1$.

Problem \#14. Determine the equation of the tangent line to the curve $\cos (y)+\sin (y)=x$ at $(-1,3 \pi)$.
Problem \#15. Compute $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ by implicit differentiation when $x^{2}-y^{2}=1$.
Problem \#16. Suppose $f(x)$ satisfies $f(f(x))=\frac{1}{2}\left(f(x)^{2}+x^{4}\right)$ and $f(1)=1$. What are the possible values of $f^{\prime}(1)$ ?

Problem \#17. Suppose $x>0$ and $x^{y}=y$.
a) Compute $\frac{d y}{d x}$.
b) Determine the tangent at $(1,1)$.

Problem \#18. Differentiate the following functions
a) $f(x)=\sqrt{1+(\ln (x))^{2}}$.
b) $f(x)=\cos (\ln |x|)$.
c) $f(x)=(\sqrt{x})^{x-1}$.

Problem \#19. An ant is crawling along a hyperbola $x^{2}-y^{2}=3$. As it reaches the point $(2,-1)$ its $x$ coordinate increases at a rate of 5 . Determine the rate of change of the $y$ coordinate when this occurs.

Problem \#20. Linearize the given function at the given value and use it approximate the given number.
a) Linearize $f(x)=x^{4}$ at $a=2$. Approximate $f(2.02)$.
b) Linearize $f(x)=\sqrt{x}$ at $a=36$. Approximate $f(36.1)$.

## Suggested Book Problems (not to be handed in).

a) Section 2.7: \#8, \# 38
b) Section 2.8: $\# 22, \# 26, \# 42$
c) Section 3.1: \# 56, \# 72
d) Section 3.2: $\# 18, \# 46, \# 50$
e) Section 3.3: \# 12, \# 18
f) Section 3.4: \# 2, \#36, \# 64
g) Section 3.5: \#56
h) Section 3.6: $\# 28$, $\# 34$
i) Section 3.9: $\# 18, \# 20, \# 22, \# 28$
j) Section 3.10: $\# 4, \# 14$, $\# 30$

