Mathematic 108, Summer 2019: Assignment #3

Due: Tuesday, July 23rd

Instructions: Please ensure your name appears on the first page. Also that your answers are legible and all pages are stapled. Page numbers refer to the course text.

Problem #1. Determine the critical numbers of the following functions

- a) $f(x) = 2x^3 + x^2 + 2x 4$.
- b) $f(x) = |x 1| + x^2$.

Problem #2. Find the absolute maximum and minimum values of the given functions on the given intervals

- a) $f(x) = -1 + 36x 3x^3$, [-3, 1].
- b) $f(x) = e^x x, -1 \le x \le 1.$
- c) $f(x) = x + \cos(x)$, $[0, 2\pi]$.

Problem #3. Explain why the function $f(x) = e^{-2x} - x^{101} - 2$ has no local maxima or minima.

Problem #4. Let $f(x) = 1 - x^{4/5}$. Show that f(-1) = f(1), but there is no value c in (-1,1) so that f'(c) = 0. Why does this not contradict Rolle's theorem.

Problem #5. Show that the equation $e^{2x} + e^x = -x$ has exactly one real solution.

Problem #6. Use the Mean Value Theorem to show that for all x, y

$$|\arctan(x) - \arctan(y)| \le |x - y|.$$

Problem #7. Determine the intervals of increase and decrease and intervals of concavity for the following functions.

- a) $f(x) = x^2 e^{-x}$.
- b) $f(x) = \cos^2(x) + 2\sin(x)$ and $-2\pi \le x \le 2\pi$.

Problem #8. For what values of c is the function $f(x) = cx + \frac{1}{x^2+3}$ decreasing on $(-\infty, \infty)$? (Hint: try to determine the maximum value of f'(x).

Suppose f is twice differentiable on (-1,1), f(0)=3, f'(0)=-1 and f''(x)>0 on Problem #9. (-1,1). Based on this information, determine an approximate value of f(0.1). Is this an overestimate or underestimate of the true value.

Problem #10. Give an example of a continuous function with domain [-1, 1] with a local maximum, but no local minimum.

Problem #11. Give an example of a function f with continuous second derivative for which f'' is zero at some point and whose graph does not have an inflection point.

Problem #12. Determine whether the following functions have an absolute maximum value and absolute minimum value on the given domain. If it does determine the value.

- a) $f(x) = \frac{1}{1+e^{-x^2}}$ on $D = (-\infty, \infty)$. b) $f(x) = \tan^{-1}(x) + \frac{1}{1+x^2}$ on $D = (-\infty, \infty)$.
- c) $f(x) = x \sqrt{x^2 + 3}$ on $D = [0, \infty)$.

Problem #13. Let $f(x) = \begin{cases} x^2 \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $g(x) = \sin(x)$.

- a) Use the limit laws to show that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ (Hint: Consider $\lim_{x\to 0} \frac{f(x)/x}{g(x)/x}$).
- b) Determine $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ how do you reconcile this with a) and L'Hospital's Rule.

Problem #14. Use L'Hospital's Rule to evaluate the following limits

- a) $\lim_{x\to 0} \frac{\arcsin(2x)}{x}$. b) $\lim x \to 0^+ \left(\frac{1}{x} \frac{1}{\arctan(x)}\right)$.
- c) $\lim_{x\to 0^+} (1+\sin(2x))^{1/x}$.

Problem #15. Suppose f is differentiable, f(3) = 1 and f'(3) = -2. Evaluate $\lim_{x\to 0} \frac{f(3+x)-f(3-4x)}{x}$.

Problem #16. Use the methods of Section 4.5 to sketch the following curves

- a) $y = \frac{(x-2)^2}{x^2+1}$ b) $y = x \sin(2x)$
- c) $y = \sqrt{1 + x^2} x$

Problem #17. Consider the family of polynomials $P_c(x) = x^3 + 3cx^2 + 3x$.

- a) Determine the values of c so that P_c has both a local maximum and a local minimum.
- b) Sketch the graph of $y = P_c(x)$ for a value c for which c has both a local maximum and minimum and sketch the graph for a value c for which it does not.

Problem #18. Determine the point on the curve $y = 2\sqrt{x}$ that is closest to the point (12,0).

Problem #19. A piece of wire of length 20m is cut into two pieces. One piece is bent into a square and the other into a circle. How should the wire be cut so total area enclosed is

- a) Maximal.
- b) Minimal.

Problem #20. Find the area of the largest rectangle that can be inscribed in the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

Suggested Book Problems (not to be handed in).

- a) Section 4.1: #4, #38, #56
- b) Section 4.2: #6, #18, #22, #26
- c) Section 4.3: #8, #24, #52
- d) Section 4.4: #4, #32, #44, #76, #88
- e) Section 4.5: #2, #12, #50, #72
- f) Section 4.6: #28
- g) Section 4.7: #4, #10, #44, #48, #76