Mathematic 108, Summer 2019: Assignment \#4

Due: Tuesday, July 30th

Instructions: Please ensure your name appears on the first page. Also that your answers are legible and all pages are stapled. Page numbers refer to the course text.

Problem \#1. Find the most general form of the antiderivative of the given functions and check your answer by differentiating.
a) $f(x)=2 x^{2}+3 x+3$
b) $f(x)=e^{x}+3 x^{2}$
c) $f(x)=x \sqrt{x}-\frac{1}{1+x^{2}}$

Problem \#2. Find the function, f, that satisfies:
a) $f^{\prime \prime}(t)=2 \cos (2 t), f(0)=1$ and $f^{\prime}(0)=0$.
b) $f^{\prime}(t)=\frac{1}{t}$ and $f(1)=1$ and $f(-1)=0$.

Problem \#3. Determine the differentiable function f so that $f(0)=1$ and $f^{\prime}(x)=\left\{\begin{array}{cc}2 x+1 & x<-1 \\ x & x \geq-1\end{array}\right.$.
Problem \#4. Determine the continuous function g so that $g(0)=0$ and $g^{\prime}(x)=\left\{\begin{array}{cl}1-x & x<2 \\ \frac{4}{x^{2}} & x>2\end{array}\right.$. Is this function differentiable?

Problem \#5. Suppose, $\int_{0}^{1} f(y) d y=-2, \int_{0}^{2} f(t) d t=-3$ and $\int_{1}^{3} f(x) d x=0$. Compute $\int_{2}^{3} f(x) d x$.
Problem \#6. Suppose that $|f(x)| \leq 2|x|$. Determine the largest and smallest possible values for $\int_{1}^{3} f(x) d x$.
Problem \#7. Suppose that the graph of f is concave up on $(-2,2), f(0)=2$ and $f^{\prime}(0)=2$. Determine the smallest possible value of $\int_{-1}^{1} f(t) d t$.

Problem \#8. Let $f(x)=\left\{\begin{array}{cc}-2 x & x \leq 2 \\ 3 & x>2 .\end{array}\right.$ Compute $F(x)=\int_{0}^{x} f(t) d t$.
Problem \#9. Evaluate the following definite integrals.
a) $\int_{-1}^{1} x^{25} d x$
b) $\int_{0}^{1} \frac{2}{1+x^{2}} d x$
c) $\int_{1}^{2} t+t^{-1} d t$.

Problem $\# 10$. If $F(x)=\int_{x}^{x^{2}} \cos \left(t^{2}\right) d t$ compute $F^{\prime}(x)$.
Problem \#11. Compute $\int_{-\pi}^{\pi}|\sin (x)| d x$.
Problem \#12. If $f(3)=3, f^{\prime}$ is continuous and $\int_{-1}^{3} f^{\prime}(t) d t=12$, then compute $f(-1)$.
Problem \#13. Evaluate the following indefinite integrals and then check your work by differentiating
a) $\int \sqrt{t}\left(t^{2}-t-1\right) d t$.
b) $\int 1-\tan ^{2}(\theta)+\cos (\theta) d \theta$.
c) $\int 2^{x}\left(3^{-x}+3^{x}\right) d x$.

Problem \#14. Suppose the velocity of a particle is $v(t)=t^{2}-2 t-3$
a) Determine the total displacement of the particle from $t=1$ to $t=4$.
b) Determine the total distance the particle travels from $t=1$ to $t=4$.

Problem \#15. Evaluate the following definite integrals
a) $\int_{0}^{2} \frac{1}{3 x+2} d x$.
b) $\int_{-1}^{2} x e^{-x^{2}} d x$.
c) $\int_{0}^{2} \frac{x}{\sqrt{1+4 x}} d x$.

Problem \#16. Evaluate the following indefinite integrals
a) $\int \sin (2 \theta) \sqrt{1+\cos (2 \theta)} d \theta$.
b) $\int \frac{x}{1+x^{4}} d x$.
c) $\int \frac{(\ln (x))^{3}}{x} d x$.

Problem $\# \mathbf{1 7}$. If $\int_{1}^{5} f(x) d x=-3$, then determine $\int_{1}^{3} f(2 x-1) d x$.
Problem \#18. Sketch the regions enclosed by the given curves and find their area
a) $y=\cos (x), y=2-\cos (x), 0 \leq x \leq 2 \pi$.
b) $y=x^{3}, y=x$.

Problem \#19. Find the area of the region bounded by the parabola $y=x^{2}$, the tangent line to this parabola at $(1,1)$ and the x-axis.

Problem \#20. For what value c is the region between $y=c^{2}-x^{2}$ and $y=x^{2}-c^{2}$ equal to 576
Suggested Book Problems (not to be handed in).
a) Section 4.9: $\# 18, \# 34, \# 38, \# 50, \# 78$
b) Section 5.1: $\# 2$, \#24
c) Section 5.2: $\# 18, \# 34, \# 40, \# 56$
d) Section 5.3: $\# 14, \# 34$, \#48, \#64

