
Linear Algebra Problem Set # 10
Selected Solutions

Stephen Harrop

May 8, 2017

Problem #1.

Suppose A ∈ Rn×n has rank(A)=1, and let ~v ∈im(A), ~v 6=~0. We need to show that ~v is an
eigenvector of A. Since A has rank=1, we know that dim(im(A)) = 1, so let~a denote the
single element of the basis of im(A). Since ~v lies in the image of A, we have that ~v = k~a
for some k ∈ R. So now we plug and chug:

A~v = A(k~a) = k(A~a) = km~a = m~v

for m ∈ R. So ~v is an eigenvector of A, as we wished to show. ♠

Problem #2.

Suppose that a ∈ Rn×n satisfies the relation A2 − 4A = −4In. We want to find what
the possible eigenvalues of A are, which is to say that we want to find all values of λ for
which there is one (or perhaps more) associated ~v ∈ Rn such that the following holds:

(A− λIn)~v =~0

Note that we can do the following::

A2 − 4A = −4In ⇒ A2 − 4A + 4In = 0⇒ (A− 2In)(A− 2In) = 0

(Multiply this out to convince yourself of this.) From this, it follows that:

(A− 2In)~v =~0

Which suggests that the possible eigenvalues of the matrix are λ = 2. ♠
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Problem #3.

(a) The following is true of V:

V = span

(1
0
1

 ,

0
1
1

)
This is true since any vector ~v lying along V must obey the equation v1 + v2 − v3 =

0 ⇒ v1 + v2 = v3, and hence has the form (v1, v2, v1 + v2). Decomposing this gives the
two basis vectors ~v1 and ~v2 above.

Furthermore, we have that the normal vector to V is ~v3 = (1, 1,−1), which follows
directly from the equation of the plane. Taking ~x = (x1, x2, x3) ∈ V we have:

(1, 1,−1) · (x1, x2, x3) = x1 + x2 − x3

which we know from the equation of the plane is equal to 0. Note that projV(~v1) = ~v1
and projV(~v2) = ~v2. So the eigenvalues are λ = 0, 1, with almu(0)=1 and almu(1)=2. The
eigenvectors are the basis vectors of the space (with eigenvector 1) and the normal vector
(with eigenvector 0). ♠

(b) The diagonalization of projV : R3 → R3 is given by:

B = S−1[projV ]BV S =

1 0 0
0 1 0
0 0 0


where

S =
[
~v1 ~v2 ~v3

]
♠

Problem #4.

(a) Suppose that~v is an eigenvector of Q ∈ Rn×n, for Q an orthogonal matrix, and suppose
that ~w is orthogonal to ~v. Since Q is orthogonal, we have that

0 = |~v · ~w| = |Q~v · Q~w| = |k~v · Q~w| = |k||~v · Q~w| ⇒ 0 = |v · Q~w|
Hence ~v is orthogonal to Q~w. ♠

(b) By (a), if ~v is an eigenvector of an orthogonal matrix Q, then if ~w is orthogonal to
~v, so is Q~w. So we let L = span(~v). This is clearly an invariant set of Q since, for any
~x ∈ L, we have Q~x = Q(k~v) = kQ~v = km~v = m~x.
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Correspondingly, let ~w, ~u ∈ R3 be orthogonal to~v (with ~w and~u linearly independent).
Let L⊥ = span(~w,~u). Consider some ~y ∈ L⊥, with ~y = a~w + b~u. Then

|~v · Q~x| = |~v · Q(a~w + b~u)| = |~v · (Qa~w) +~v · (Qb~u)| =

|a(~v · (Q~w)) + b(~v · (Q~u))| = |a(0) + b(0)| = 0

And so Q~x ∈ L⊥, which shows that L⊥ is an invariant set of Q. ♠

Problem #5.

(a) To verify Q is orthogonal, we check whether QTQ = I3:

1
3

2 −1 −2
2 2 1
1 −2 2

 · 1
3

 2 2 1
−1 2 −2
−2 1 2

 =
1
9

9 0 0
0 9 0
0 0 9

 =

1 0 0
0 1 0
0 0 1


So Q is indeed an orthogonal matrix. ♠

(b) We know that the only real eigenvalues of an orthogonal matrix are λ = 1 and
λ = −1. So we need to find a vector that Q scales by 1 or −1. By inspection we can
see that (1, 1,−1) is such a vector with λ = 1, since 1

3(2× 1 +−1× 1 +−2×−1) = 1,
1
3(2× 1 + 2× 1 + 1×−1) = 1, and 1

3(1× 1 +−2× 1 + 2×−1) = −1
Now, from Problem #4, we can find L fairly easily by just finding an eigenvector of Q:

L = span

( 1
1
−1

)

To find L⊥, we simply need to find two vectors that are perpendicular to (1, 1,−1).
Note that we can just find vectors which span a plane to which (1, 1,−1) is a normal
vector. Recalling Problem #3, we get that such a plane is in fact

L⊥ = {(x1, x2, x3) ∈ R3 : x1 + x2 − x3 = 0}
It’s easy to see this: take some vector lying on that plane, (x1, x2, x3), and take its dot

product with (1, 1,−1): (x1, x2, x3) · (1, 1,−1) = x1 + x2 − x3 = 0. So we get that:

L⊥ = span

(1
0
1

 ,

0
1
1

)
♠
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(c) If we run Gram-Schmidt on the basis of L⊥ we get the following orthonormal basis
of L⊥:

B = {( 1√
2

, 0,
1√
2
), (
−1√

6
,

2√
6

,
1√
6
)}

(Check for yourself that these still lie on the original plane.) Now, we apply Q to these:

1
3

2 −1 −2
2 2 1
1 −2 2

 ·


1√
2

0
1√
2

 =

 0
1√
2

1√
2


1
3

2 −1 −2
2 2 1
1 −2 2

 ·


−1√

6
2√
6

1√
6

 =


−2√

6
1√
6
−1√

6


This suggests a rotation. Recalling the formula ~x · ~y = ‖~x‖‖~y‖ cosθ, we take the dot

product of the original vectors and the resultant vectors and find the inverse cosine:

‖~u1‖2 cosθ = ~u1 · Q~u1 =
1
2
⇒ cosθ =

1
2
⇒ θ = arccos

1
2
=

π

3

‖~u2‖2 cosθ = ~u2 · Q~u2 =
1
2
⇒ cosθ =

1
2
⇒ θ = arccos

1
2
=

π

3
So we conclude that Q represents a rotation through π

3 .

Problem #6.

(a) We find the secular equation of A by taking det(A− λI3):

fA(λ) =

∣∣∣∣∣∣
1− λ k + 1 0

0 1− λ k2 − a
0 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣1− λ k2 − 1
0 1− λ

∣∣∣∣ = (1− λ)3

Since λ is a root of fA(λ) with multiplicity 3 λ = 1 has algebraic multiplicity 3. ♠.

(b) To determine this we examine rank(A− I3):

A− I3 =

0 k + 1 0
0 0 k2 − 1
0 0 0


Note that if k = −1, rank(A− I3)=0, in which case gemu(λ)=3, and if k = 1, rank(A−

I3)=1, in which case gemu(λ)=2. In all other cases where k ∈ R, rank(A− I3)=2, and so
gemu(λ)=1. ♠
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Problem #7.

(a) Note that fA(λ) = −(λ− 5)(λ2 − 6λ+ 25), which has roots λ = 5, 3 + 4i, 3− 4i. Con-
sequently A cannot be similar to any diagonal matrix with real eigenvalues, and hence is
not diagonalizable over R (though it may be diagonalizable over C). ♠

(b) Let’s look at the secular equation again: fA(λ) = (2− λ)2. In this case, we have purely
real roots: λ = 2, almu(λ)=2. But note that gemu(2)=2−rank(A− 2I2)=2− 1=1. Since
the geometric multiplicity of an eigenvalue is equal to the dimension of its corresponding
eigenspace, we have that the only eigenspace of A is of dimension 1. Consequently, the
basis consisting of all eigenvectors of A will have only a single element, which means that
it cannot form an eigenbasis (i.e., it cannot span R2). Therefore, A is not diagonalizable.♠

Problem #8.

(a) Note that T is diagonalizable iff we can find an eigenbasis of T. So we need to find
the eigenvectors of T and ask whether they span P2. Let p(x) = a0 + a1x + a2x2. Now we
apply T:

T(p(x)) = a0 + a1(x− 3) + a2(x− 3)2 = a0 + a1x− 3a1 + a2x2 − 6a2x + 9a2

= (a0 − 3a1 + 9a3) + (a1 − 6a2)x + a2x2

So the corresponding matrix is:

[T]B =

1 −3 9
0 1 −6
0 0 1


with secular equation fT(λ) = (1− λ)3. So [T]B has eigenvalue λ = 1 with almu(λ)=3.

Note what happens when we find ker(A− I3):0 −3 9 0
0 0 −6 0
0 0 0 0

 rref−−→

0 1 0 0
0 0 1 0
0 0 0 0


This gives us that [T]B has eigenvector~v = (1, 0, 0), which means that T has eigenvec-

tor p(x) = 1. Clearly, span(p(x) = 1) 6= P2, so T is not diagonalizable. ♠

(b) Let p(x) = a0 + a1x + a2x2. Then T(p(x)) = xp′(x) = x(a1 + 2a2x) = a1x + 2a2x2. If
p(x) is an eigenvalue of T, then we have that T(p(x)) = λp(x), which implies in this case
that a0 = 0, λa1 = a1, and λa2 = 2a2. So the eigenvectors of T are p1(x) = 1, with eigen-
value λ = 0, p2(x) = x, with eigenvalue λ = 1, and p3(x) = x2, with eigenvalue λ = 2.
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These clearly do span P2, since for arbitrary q(x), we can write it in some superposition
of p1, p2, and p3. Consequently, T is diagonalizable.

Another way to see this is, again, to look at [T]B:

[T]B =

0 0 0
0 1 0
0 0 2


This matrix has eigenvalues λ = 0, 1, 2, and the corresponding eigenvectors are just

the standard basis vectors of R3. Thus since we have an eigenbasis of R3, and R2 ∼= P2,
we also have an eigenbasis of P2 under the usual basis transformation. ♠

Problem #9.

(a) We diagonalize! The secular equation of A is fA(λ) = (−2− λ)(3− λ) + 6 = λ(λ− 1),
so λ = 0, 1, with associated eigenvectors~v1 = (−1, 1),~v2 = (−2, 3). So now, we compute:

A11 =

[
−1 −2
1 3

]
·
[

011 0
0 111

]
·
[
−3 −2
1 1

]
=

[
−1 −2
1 3

]
·
[

0 0
1 1

]
=

[
−2 −2
3 3

]
= A

♠
(b) We do the same thing. Since A is upper-triangular, the eigenvalues are λ = −1, 1, 0,
with corresponding eigenvectors ~v1 = (−1,−2, 2), ~v2 = (1, 0, 0), and ~v3 = (−1, 1, 0). So
now we compute!

A11 =

−1 1 −1
−2 0 1
2 0 0

 ·
(−1)11 0 0

0 111 0
0 0 011

 · 1
2

0 0 1
2 2 3
0 2 2

 =
1
2

−1 1 −1
−2 0 1
2 0 0

 ·
0 0 −1

2 2 3
0 0 0



=
1
2

2 2 4
0 0 2
0 0 −2

 =

1 1 2
0 0 1
0 0 −1

 = A

♠
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Problem #10.

(a) We know that if A is symmetric (which it is), then it is orthogonally diagonalizable.
Hence, all we need to do to find an orthonormal eigenbasis is find the eigenvectors and
normalize them. The characteristic polynomial of A is fA(λ) = (2 − λ)(1 − λ) − 4 =

λ2 − 3λ − 2, with roots λ = 1
2(3 +

√
17), 1

2(3 −
√

17). The associated eigenvectors are
~v1 = ( 1

4(1 +
√

17), 1), ~v1 = ( 1
4(1−

√
17), 1). Hence our eigenbasis is:

B = { 1
‖~v1‖

(
1
4
(1 +

√
17), 1),

1
‖~v2‖

(
1
4
(1−

√
17), 1)}

where

‖~v1‖ =
1
2

√
1
2
(17 +

√
17)

‖~v2‖ =
1
2

√
1
2
(17−

√
17)

♠

(b) The same thing holds here as in (a). The secular equation of A is fA(λ) = −λ(λ −
2)(λ + 1), so the eigenvalues are λ = 2,−1, 0, with corresponding eigenvectors ~v1 =
(1,−1, 2), ~v2 = (−1, 1, 1), ~v3 = (1, 1, 0). So our orthonormal eigenbasis is:

B = {( 1√
6

,
−1√

6
,

2√
6
), (
−1√

3
,

1√
3

,
1√
3
), (

1√
2

,
1√
2

, 0)}

♠
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