
1. The least-square solution of A~x = ~b are the exact solutions of the system
ATA~x = AT~b

(a)

ATA =

[
2 0 1
1 −1 2

] 2 1
0 −1
1 2

 =

[
5 4
4 6

]

AT~b =

[
2 0 1
1 −1 2

] 1
0
−1

 =

[
1
−1

]
So ATA~x = AT~b gives us:[

5 4
4 6

] [
x1

x2

]
=

[
1
−1

]
Therefore: [

x1

x2

]
=

[
5
7−9
14

]
(b)

ATA =

 0 2 1
−1 1 1
1 1 0

 0 −1 1
2 1 1
1 1 0

 =

 5 3 2
3 3 0
2 0 2


AT~b =

 0 2 1
−1 −1 1
1 1 0

 1
1
1

 =

 3
1
2


So ATA~x = AT~b gives us: 5 3 2

3 3 0
2 0 2

 x1

x2

x3

 =

 3
1
2


Note that I = II + III so we can simplify our matrix to: 0 0 0

3 3 0
2 0 2

 x1

x2

x3

 =

 0
1
2


This gives us:  x1

x2

x3

 =

 x1
1
3 − x1

1− x1


So our final answer is:

~x =

 t
1
3 − t
1− t
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2. Note that ATA~x8 = AT ~e1 gives us that: 5 1 3
1 2 1
3 1 3

 x1

x2

x3

 =

 2
0
1


So,

~x∗e1 =

 1
2−1
5
1
10


and ||~e1 −A~x∗e1 || =

√
10
10 . While

~x∗e2 =

 0
2
5
1
5


and ||~e2 −A~x∗e2 || =

√
10
5 .

So the least-square solution to A~x = ~e1 is closer to a true solution.

3. Since we know we have a quadratic, our answer must be in the form:
f(x) = ax2 + bx + c. So the points (0,0), (2,1), (1,1), and (-2, 0) give us
the system of equations:

a ∗ 0 + b ∗ 0 + c = 0

a ∗ 4 + b ∗ 2 + c = 1

a ∗ 1 + b ∗ 1 + c = 1

a ∗ 4 + b ∗ −2 + c = 0

This becomes the matrix:

A =


0 0 1
4 2 1
1 1 1
4 −2 1


and the vector

b =


0
1
1
0


So ATA~x = AT~b gives us: 33 1 9

1 9 1
9 1 4

 x1

x2

x3

 =

 5
3
2


Solving this system of equations gives us the polynomial:
f(x) = 3

44x
2 + 13

44x + 3
11
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4. (a) Note that each entry in A can be written as (aij) and every entry in
B can be written as (bij). Now note that the product of AB is:

(AB)ij =

n∑
k=1

aikbki.

Then since the trace of a matrix is the sum of its diagonal entries:

Tr(AB) =

n∑
j=1

n∑
k=1

ajkbkj .

Now we want to show that BA yields the same result.

(BA)ij =

n∑
k=1

bikaki.

and

Tr(BA) =

n∑
j=1

n∑
k=1

bjkakj .

Thus we see that Tr(AB) = Tr(BA)

(b) Given that Q is orthogonal we know that QT = Q−1 We essentially
want to prove:

Tr(ATB) = Tr((QA)TQB) = Tr((AQ)TBQ)

Let’s start with the second term:

Tr((QA)TQB) = Tr(ATQTQB) = Tr(ATQ−1QB)Tr(ATB)

so, the first part of the equation is true. Evaluating the third term
we get:

Tr((AQ)TBQ) = Tr(QTATBQ) = Tr(BQQTAT ) = Tr(BAT )

Thus:
Tr(ATB) = Tr((QA)TQB) = Tr((AQ)TBQ)

5. We know that ||A||HS =
√

tr(ATA) and

tr(ATA) =

n∑
i=1

a2i

. Given that matrix A is made up of the vectors ~ai Thus we see that
||A||HS =

√
a12 + a22 + ... + a2n

So we get

||A||HS ||~x||HS =
√

a21 + a22 + ... + a2n||~x||HS

iii



and

||A~x|| =

√√√√ n∑
i=1

(ai~x)2

By Cauchy-Schwartz Inequality we have:

|ai~x| ≤ ||ai||||~x||

Thus,
||A~x|| ≤ ||A||HS ||~x||

6. To prove this is an inner product we need to show that:
1. < f, g >=< g, f > which holds true if b =c.
2. < f + h, g >=< f, g > + < hg > which holds true always.
3. < kf, g >= k < f, g > which holds true always.
4. < f, f >> 0 which holds true if b2 < a.

7. (a)

det

[
1 k
k 9

]
= 9− k2

In order for the matrix to be invertible the determinant cannot equal
zero. Thus k can take on any value except ± 3.

(b)

det

 k 3 k
0 2 −k
0 0 k + 1

 = k(2)(k + 1)

In order for the matrix to be invertible the determinant cannot equal
zero. Thus k can take on any value except 0 or -1.

8. (a) The determinant will increase by 2 since the vector ~v1 is increased
by two and since we switched the rows 3 times, the determinant will
be multiplied by (−1)3. So det = 8.

(b) Adding the vectors will have no effect on the determinant so the only
thing we need to take into account is the switching of ~v3 and ~v4. So
det = 4.

9. det(kA) = kndet(A)

10. If A is skew-symmetric then:

det(A) = det(AT ) = det(−A) = (−1)ndet(A)

If n is an odd number then (−1)n = −1 so in order for det(A) = -det(A),
det(A) = 0. Therefore, A is not invertible.
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