1. The least-square solution of AZ = b are the exact solutions of the system
ATAz = ATb

(a)

2 1
o [2 0 1 Sl 5 4
AA_[1—1 2] (1) 21 _{4 6}
[ 1
e [2 0 1 [
=[] o -1

Therefore:
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(b)
0 2 1 0 -1 1 5 3 2
ATA=] -1 1 1 2 1 1|=13 30
1 10 1 1 0 2 0 2
B 0 2 1717 3
ATp=| -1 -1 1 1]=1]1
1 1 0] 1] | 2
So AT Az = ATb gives us:
(5 3 277 z1 (3]
3 30 zs | =] 1
2 0 2| a3 | 2

Note that I = II + Il so we can simplify our matrix to:

0 0 O T 0
3 3 0 To | =] 1
|2 0 2 || z3 | | 2 |
This gives us:
€ A
T2 = % — X
T3 1—x
So our final answer is:
t
F=| +—t
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2. Note that AT Az® = AT¢] gives us that:

5 1 3 T 2
1 2 1 zo | =10
31 3 T3 1
So,
1
2
ok —1
.’ﬂel = T
10
and [|6f — A7z, || = Y10, While
0
% 2
er = ?
5

and |63 — AT || = 22
So the least-square solution to AZ = €7 is closer to a true solution.
3. Since we know we have a quadratic, our answer must be in the form:

f(x) = az? + bz + ¢. So the points (0,0), (2,1), (1,1), and (-2, 0) give us
the system of equations:

ax04+bx0+c=0
axd+bx2+c=1
axl+bxl4+c=1
axd+bx—-2+c=0

This becomes the matrix:

0 0 1
4 2 1
A= 1 1 1
4 -2 1
and the vector ~
0
1
b= 1
| 0
So AT A7 = ATh gives us:
331 97 [ m 5
1 9 1 ZTo = 3
9 1 4 L T3 2

Solving this system of equations gives us the polynomial:
flx)= 222+ Ba+ 2
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4.

()

Note that each entry in A can be written as (a;;) and every entry in
B can be written as (b;;). Now note that the product of AB is:

n
(AB)ZJ = Zaikbki~
k=1
Then since the trace of a matrix is the sum of its diagonal entries:
n n
TT’(AB) = Z Z ajkbkj.
j=1k=1

Now we want to show that BA yields the same result.
(BA)ij = > bixa.
k=1

and

Tr(BA) =Y bjax;.

j=1k=1
Thus we see that Tr(AB) = Tr(BA)

Given that Q is orthogonal we know that Q7 = Q~! We essentially
want to prove:

Tr(A"B) = Tr((QA)"QB) = Tr((AQ)" BQ)
Let’s start with the second term:
Tr((QA)"QB) = Tr(ATQ"QB) = Tr(A"Q™'QB)Tr(A"B)

so, the first part of the equation is true. Evaluating the third term
we get:

Tr((AQ)T'BQ) = Tr(QT AT BQ) = Tr(BQQT AT) = Tr(BA™)

Thus:
Tr(A"B) = Tr((QA)"QB) = Tr((AQ)" BQ)

5. We know that ||A||gs = v/tr(ATA) and

n

tr(ATA) = Z a?

i=1

Given that matrix A is made up of the vectors a; Thus we see that

l|Al|lgs = \/(112 +a3+..+a?
So we get

| All s 2] s = \/a? +a3+ ...+ apl|lZ|ms
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and

By Cauchy-Schwartz Inequality we have:
la;Z] < [|a;[||Z]]

Thus,
|AZ]] < [|All s ]2

6. To prove this is an inner product we need to show that:
1. < f,g >=< g, f > which holds true if b =c.
2. < f+h,g>=< f,g >+ < hg > which holds true always.
3. <kf,g>=k < f,g > which holds true always.
4. < f, f >> 0 which holds true if b < a.

7. (a)

1 k| 9
det[k 9:|—9—]€

In order for the matrix to be invertible the determinant cannot equal
zero. Thus k can take on any value except £ 3.

k3 k
det | 0 2 —k | =k@)(k+1)
00 k+1

In order for the matrix to be invertible the determinant cannot equal
zero. Thus k can take on any value except 0 or -1.

8. (a) The determinant will increase by 2 since the vector v7 is increased
by two and since we switched the rows 3 times, the determinant will
be multiplied by (—1)3. So det = 8.

(b) Adding the vectors will have no effect on the determinant so the only
thing we need to take into account is the switching of v5 and ¥y. So
det = 4.

9. det(kA) = k"det(A)
10. If A is skew-symmetric then:
det(A) = det(AT) = det(—A) = (—1)"det(A)

If n is an odd number then (—1)" = —1 so in order for det(A) = -det(A),
det(A) = 0. Therefore, A is not invertible.
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