1. The least-square solution of $A \vec{x}=\vec{b}$ are the exact solutions of the system $A^{T} A \vec{x}=A^{T} \vec{b}$
(a)

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
0 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 6
\end{array}\right] \\
A^{T} \vec{b}=\left[\begin{array}{ccc}
2 & 0 & 1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

So $A^{T} A \vec{x}=A^{T} \vec{b}$ gives us:

$$
\left[\begin{array}{ll}
5 & 4 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Therefore:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{7} \\
\frac{-9}{14}
\end{array}\right]
$$

(b)

$$
\begin{aligned}
& A^{T} A= {\left[\begin{array}{ccc}
0 & 2 & 1 \\
-1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 1 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
5 & 3 & 2 \\
3 & 3 & 0 \\
2 & 0 & 2
\end{array}\right] } \\
& A^{T} \vec{b}=\left[\begin{array}{ccc}
0 & 2 & 1 \\
-1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

So $A^{T} A \vec{x}=A^{T} \vec{b}$ gives us:

$$
\left[\begin{array}{lll}
5 & 3 & 2 \\
3 & 3 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

Note that $I=I I+I I I$ so we can simplify our matrix to:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 3 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

This gives us:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
\frac{1}{3}-x_{1} \\
1-x_{1}
\end{array}\right]
$$

So our final answer is:

$$
\vec{x}=\left[\begin{array}{c}
t \\
\frac{1}{3}-t \\
1-t
\end{array}\right]
$$

2. Note that $A^{T} A \vec{x}^{8}=A^{T} \overrightarrow{e_{1}}$ gives us that:

$$
\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 2 & 1 \\
3 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

So,

$$
\vec{x}_{e_{1}}^{*}=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{-1}{5} \\
\frac{1}{10}
\end{array}\right]
$$

and $\left\|\overrightarrow{e_{1}}-A \vec{x}_{e_{1}}^{*}\right\|=\frac{\sqrt{10}}{10}$. While

$$
\vec{x}_{e_{2}}^{*}=\left[\begin{array}{c}
0 \\
\frac{2}{5} \\
\frac{1}{5}
\end{array}\right]
$$

and $\left\|\overrightarrow{e_{2}}-A \vec{x}_{e_{2}}^{*}\right\|=\frac{\sqrt{10}}{5}$.
So the least-square solution to $A \vec{x}=\overrightarrow{e_{1}}$ is closer to a true solution.
3. Since we know we have a quadratic, our answer must be in the form: $f(x)=a x^{2}+b x+c$. So the points $(0,0),(2,1),(1,1)$, and $(-2,0)$ give us the system of equations:

$$
\begin{array}{r}
a * 0+b * 0+c=0 \\
a * 4+b * 2+c=1 \\
a * 1+b * 1+c=1 \\
a * 4+b *-2+c=0
\end{array}
$$

This becomes the matrix:

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
4 & 2 & 1 \\
1 & 1 & 1 \\
4 & -2 & 1
\end{array}\right]
$$

and the vector

$$
b=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

So $A^{T} A \vec{x}=A^{T} \vec{b}$ gives us:

$$
\left[\begin{array}{ccc}
33 & 1 & 9 \\
1 & 9 & 1 \\
9 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]
$$

Solving this system of equations gives us the polynomial: $f(x)=\frac{3}{44} x^{2}+\frac{13}{44} x+\frac{3}{11}$
4. (a) Note that each entry in A can be written as $\left(a_{i j}\right)$ and every entry in B can be written as $\left(b_{i j}\right)$. Now note that the product of AB is:

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k i}
$$

Then since the trace of a matrix is the sum of its diagonal entries:

$$
\operatorname{Tr}(A B)=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{j k} b_{k j}
$$

Now we want to show that BA yields the same result.

$$
(B A)_{i j}=\sum_{k=1}^{n} b_{i k} a_{k i}
$$

and

$$
\operatorname{Tr}(B A)=\sum_{j=1}^{n} \sum_{k=1}^{n} b_{j k} a_{k j}
$$

Thus we see that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$
(b) Given that Q is orthogonal we know that $Q^{T}=Q^{-1}$ We essentially want to prove:

$$
\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left((Q A)^{T} Q B\right)=\operatorname{Tr}\left((A Q)^{T} B Q\right)
$$

Let's start with the second term:

$$
\operatorname{Tr}\left((Q A)^{T} Q B\right)=\operatorname{Tr}\left(A^{T} Q^{T} Q B\right)=\operatorname{Tr}\left(A^{T} Q^{-1} Q B\right) \operatorname{Tr}\left(A^{T} B\right)
$$

so, the first part of the equation is true. Evaluating the third term we get:

$$
\operatorname{Tr}\left((A Q)^{T} B Q\right)=\operatorname{Tr}\left(Q^{T} A^{T} B Q\right)=\operatorname{Tr}\left(B Q Q^{T} A^{T}\right)=\operatorname{Tr}\left(B A^{T}\right)
$$

Thus:

$$
\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left((Q A)^{T} Q B\right)=\operatorname{Tr}\left((A Q)^{T} B Q\right)
$$

5. We know that $\|A\|_{H S}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$ and

$$
\operatorname{tr}\left(A^{T} A\right)=\sum_{i=1}^{n} a_{i}^{2}
$$

. Given that matrix A is made up of the vectors $\overrightarrow{a_{i}}$ Thus we see that $\|A\|_{H S}=\sqrt{a 1^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}$
So we get

$$
\|A\|_{H S}\|\vec{x}\|_{H S}=\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}\|\vec{x}\|_{H S}
$$

and

$$
\|A \vec{x}\|=\sqrt{\sum_{i=1}^{n}\left(a_{i} \vec{x}\right)^{2}}
$$

By Cauchy-Schwartz Inequality we have:

$$
\left|a_{i} \vec{x}\right| \leq\left\|a_{i}|\|\mid \vec{x}\|\right.
$$

Thus,

$$
\|A \vec{x}\| \leq\|A\|_{H S}\|\vec{x}\|
$$

6. To prove this is an inner product we need to show that:
7. $\langle f, g>=<g, f>$ which holds true if $\mathrm{b}=\mathrm{c}$.
8. $<f+h, g>=<f, g>+<h g>$ which holds true always.
9. $<k f, g>=k<f, g>$ which holds true always.
10. $<f, f \gg 0$ which holds true if $b^{2}<a$.
11. (a)

$$
\operatorname{det}\left[\begin{array}{cc}
1 & k \\
k & 9
\end{array}\right]=9-k^{2}
$$

In order for the matrix to be invertible the determinant cannot equal zero. Thus k can take on any value except ± 3.
(b)

$$
\operatorname{det}\left[\begin{array}{ccc}
k & 3 & k \\
0 & 2 & -k \\
0 & 0 & k+1
\end{array}\right]=k(2)(k+1)
$$

In order for the matrix to be invertible the determinant cannot equal zero. Thus k can take on any value except 0 or -1 .
8. (a) The determinant will increase by 2 since the vector $\overrightarrow{v_{1}}$ is increased by two and since we switched the rows 3 times, the determinant will be multiplied by $(-1)^{3}$. So det $=8$.
(b) Adding the vectors will have no effect on the determinant so the only thing we need to take into account is the switching of \vec{v}_{3} and \vec{v}_{4}. So $\operatorname{det}=4$.
9. $\operatorname{det}(\mathrm{kA})=k^{n} \operatorname{det}(\mathrm{~A})$
10. If A is skew-symmetric then:

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)
$$

If n is an odd number then $(-1)^{n}=-1$ so in order for $\operatorname{det}(\mathrm{A})=-\operatorname{det}(\mathrm{A})$, $\operatorname{det}(\mathrm{A})=0$. Therefore, A is not invertible.

