
Problem #1. Calculate the determinant of the following matrices by using any
method you like.

a)


0 2 0 0
−1 0 0 0
0 0 0 2
0 0 3 0

 b)

2 2 −4
0 1 1
1 1 3



a)

∣∣∣∣∣∣∣∣
0 2 0 0
−1 0 0 0
0 0 0 2
0 0 3 0

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
−1 0 0 0
0 2 0 0
0 0 0 2
0 0 3 0

∣∣∣∣∣∣∣∣ By row-swap

=

∣∣∣∣∣∣∣∣
−1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

∣∣∣∣∣∣∣∣ By row-swap

= −1× 2× 3× 2 = −12

b)

∣∣∣∣∣∣
2 2 −4
0 1 1
1 1 3

∣∣∣∣∣∣
=

∣∣∣∣2 −4
1 3

∣∣∣∣− ∣∣∣∣2 2
1 1

∣∣∣∣ By expanding out on the 2nd row

= 10− 0 = 10

Problem #2. Compute the determinant of the following linear transformations:

a) T : P2 → P2 defined by T (p)(x) = xp′(x)− p(x)

b) T : R2×2 → R2×2 defined by T (A) =

[
1 2
3 4

]
A.

a) Let β = {1, x, x2}, we’ll solve for [T ]β .

T (a+ bx+ cx2) = x(b+ 2cx)− (a+ bx+ cx2) = −a+ cx2

1



2

=⇒ [T ]β =

−1 0 0
0 0 0
0 0 1


=⇒ det(T ) = det([T ]β) = 0

b) Let β =

{[
1 0
0 0

]
,

[
0 0
1 0

] [
0 1
0 0

]
,

[
0 0
0 1

]}
.

Then, [T ]β =


1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

 by inspection.

=⇒ det(T ) = det([T ]β) = det

([
1 2
3 4

])
· det

([
1 2
3 4

])
= (−2)2 = 4

Problem #3. Fix a vector ~v ∈ Rn.

a) Find a basis β, so that [In + ~v~vT ]β is diagonal and the non-zero entries are 1
or 1 + ‖~v‖2. (Hint: When ~v 6= 0, consider ~v together with a basis of span(v)⊥.)

b) Conclude that det(In + ~v~vT ) = 1 + ‖~v‖2.

If ~v = ~0, then In + ~v~vT = In, just take β as the standard basis and the result is
obvious. So now let ~v 6= ~0.

Following the hint, let {~w1, ~w2, ..., ~wn−1} be a basis of span(v)⊥. I claim that
β = {~v, ~w1, ~w2, ..., ~wn−1}. We’ll solve for [In + ~v~vT ]β column-by-column.

(In + ~v~vT )~v

= ~v + ~v(~v · ~v)

= (1 + ~v · ~v)~v

= (1 + ‖~v‖2)~v

(In + ~v~vT )~wi

= ~wi + ~v(~v · ~wi)

= ~wi
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because ~v · ~w = 0. They’re perpendicular to each others because ~wi ∈ span(v)⊥

by assumption.

=⇒ [In + ~v~vT ]β =



1 + ‖~v‖2 0 0 0 0
0 1 0 0 . . . 0
0 0 1 0 0
0 0 0 1 0

...
. . .

...
0 0 0 0 . . . 1


Clearly, det(In + ~v~vT ) = det([In + ~v~vT ]β) = 1 + ‖~v‖2.

Problem #4. Suppose J ∈ (R)n×n satisfies J2 = −In. Use the determinant, to
show that n = 2m is even.

det(J2)

= det(JJ)

= det(J) · det(J)

= det(J)2

det(−In) = (−1)n, because det(kA) = kn · det(A).

=⇒ det(J)2 = (−1)n

Left hand side is nonnegative, so n can’t be odd.

Problem #5. Let M =
[
~v1 ~v2 ~v3

]
∈ R3×3.

a) Show that |det(M) ≤ ‖~v1‖‖~v2‖‖~v3‖. Hint: Use the QR factorization).

b) Give an example of an invertible matrix for which equality is achieved.

Following the hint, let M = QR. Taking the determinant on both sides, we have
det(M) = det(QR) = det(Q) · det(R) = ±det(R) (Recall that the determinant of
an orthogonal matrice is ±1). Now, let Q =

[
~w1 ~w2 ~w3

]
.

Then, R = Q−1M = QTM
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=

~w1

~w2

~w3

 [~v1 ~v2 ~v3
]

=

~w1 · ~v1 ~w1 · ~v2 ~w1 · ~v3
0 ~w2 · ~v2 ~w2 · ~v3
0 0 ~w3 · ~v3

 Upper-triangular by properties of QR factoriza-

tion

=⇒ det(R) = (~w1 · ~v1)(~w2 · ~v2)(~w3 · ~v3)

≤ ‖~v1‖‖~v2‖‖~v3‖, by Cauchy-Schwarz Inequality. Recall that ‖wi‖ = 1 by prop-
erties of orthogonal matrices.

An example where the equality is achieved is I3.

Problem #6. Let P ⊂ R3 be the parallelpiped spanned by

 2
0
−1

 ,
1

1
1

 ,
0

0
1

.

V =

∣∣∣∣∣∣det

 2 1 0
0 1 0
−1 1 1

∣∣∣∣∣∣
=

∣∣∣∣det

[
2 1
0 1

]∣∣∣∣
= 2

SA = 2|~v1 × ~v2|+ 2|~v1 × ~v3|+ 2|~v2 × ~v3|

= 2

∥∥∥∥∥∥
 2

0
−1

×
1

1
1

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥
 2

0
−1

×
0

0
1

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥
1

1
1

×
0

0
1

∥∥∥∥∥∥
= 2

∥∥∥∥∥∥
 1
−3
2

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥
 0
−2
0

∥∥∥∥∥∥+ 2

∥∥∥∥∥∥
 1
−1
0

∥∥∥∥∥∥
= 2
√

14 + 2 · 2 + 2
√

2

= 4 + 2
√

2 + 2
√

14

Problem #7. Determine all A ∈ R2×2 for which

[
1
−2

]
is an eigenvector with

associated eigenvalue 2.
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Solution 1:[
a b
c d

] [
1
−2

]
= 2 ·

[
1
−2

]
a− 2b = 2 =⇒ a = 2b+ 2

c− 2d = −4 =⇒ c = 2d− 4

=⇒ A =

[
2b+ 2 b
2d− 4 d

]
,∀b, d ∈ R

Solution 2:

Let β =

{[
1
−2

]
,

[
0
1

]}

Then, [A]β =

[
2 a
0 b

]

So A =

[
1 0
−2 1

] [
2 a
0 b

] [
1 0
−2 1

]−1

=

[
1 0
−2 1

] [
2 a
0 b

] [
1 0
2 1

]

=

[
1 0
−2 1

] [
2 + 2a a

2b b

]

=

[
2 + 2a a

−4− 4a+ 2b −2a+ b

]
,∀a, b ∈ R

Problem #8. Find the eigenvalues and their algebraic multiplicities for the fol-
lowing matrices

a)

[
0 −4
1 −4

]
b)

−3 0 4
0 −1 0
−2 7 3



a) λ2 − trAλ+ detA = 0

λ2 + 4λ+ 4 = 0

λ = −2 has multiplicity 2.
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b)

∣∣∣∣∣∣
−3− λ 0 4

0 −1− λ 0
−2 7 3− λ

∣∣∣∣∣∣ = 0

=⇒ (−1− λ)

∣∣∣∣3− λ 4
−2 3− λ

∣∣∣∣ = 0

=⇒ (−1− λ)((−3− λ)(3− λ) + 8) = 0

=⇒ (−1− λ)(λ2 − 1) = 0

=⇒ −(λ+ 1)2(λ− 1) = 0

So λ = −1 has multiplicity 2, λ = 1 has multiplicity 1.

Problem #9. Find all eigenvalues of the following 2× 2 matrices

a)

[
a b
b −a

]
for a, b ∈ R b)

[
a b
b a

]
for a, b ∈ R

a) λ2 − trAλ+ detA = 0

=⇒ λ2 − a2 − b2 = 0

=⇒ λ = ±
√
a2 + b2

b) λ2 − trAλ+ detA = 0

=⇒ λ2 − 2aλ+ a2 − b2 = 0

=⇒ (λ− a)2 = b2

=⇒ λ− a = ±b

=⇒ λ = a± b

Problem #10. Show that if A is a symmetric matrix and ~v1, ~v2 are eigenvectors
of A with different associated eigenvalues, then ~v1 is orthogonal to ~v2. (Hint: Use
that (A~x) · ~y = ~x · (AT~y).)

(A~x) · ~y = ~x · (AT~y) = ~x · (A~y)

=⇒ (λ1~x) · ~y = ~x · (λ2~y)
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=⇒ λ1(~x · ~y) = λ2(~x · ~y)

=⇒ ~x · ~y = 0, otherwise we could cancel it on both sides and get λ1 = λ2.

So ~x is orthogonal to ~y.


