Practice Final Exam

1. Consider the following system

$$
\binom{x_{1}}{x_{1}}^{\prime}=\binom{-4 x_{1}\left(x_{1}^{2}-1\right)\left(x_{2}-2\right)^{2}}{-2 x_{2}\left(x_{1}^{2}-1\right)^{2}+4\left(x_{1}-1\right)^{2}\left(x_{1}+1\right)^{2}}
$$

(a) (10 points) Show this is a gradient system by determining the function V so that $\mathbf{X}^{\prime}=-\nabla V$
(b) (10 points) Determine all equilibria of the system and classify their type.
(c) (10 points) For each sink determine the largest value $R>0$ so that all points at distance less than R to the sink are in the basin of attraction of the sink. That is, if \mathbf{X}_{0} is one such sink, then R is the largest value so that $\left\{\mathbf{X}:\left|\mathbf{X}-\mathbf{X}_{0}\right|<R\right\}$ is in the basin of attraction of \mathbf{X}_{0}.
2. (20 points) Give an example of an planar system for which the set $\Omega=\{\mathbf{X}:|\mathbf{X}|<1\}$ is positively invariant and contains only one sink \mathbf{X}_{0}, but the basin of attraction of \mathbf{X}_{0} is strictly small than Ω. (Recall, a region is postiively invariant if no solution with initial condition in Ω leaves Ω for $t \geq 0$).
3. Consider the planar system

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{x_{1}\left(2-x_{2}\right)}{x_{2}\left(-2+4 x_{1}\right)}
$$

(a) (10 points) Determine all equilibria of of the system and classify their type.
(b) (10 points) Verify that the function

$$
L\left(x_{1}, x_{2}\right)=4 x_{1}-2 \log x_{1}+x_{2}-2 \log x_{2}
$$

which is defined for $x_{1}, x_{2}>0$ is a Lyapunov function for the system.
(c) (10 points) Using L, what can you say about the stability of the equilibria?
4. Consider the forced 2×2 linear system

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}+\binom{\cos t}{e^{t}} \quad \text { where } \quad A=\left(\begin{array}{cc}
-2 & 1 \\
-9 & 4
\end{array}\right) .
$$

(a) (10 points) Compute the matrix exponential $e^{t A}$.
(b) (10 points) Find a particular solution to the equation (you may use any method you like).
5. (20 points) Determine a 3×3 linear system of ODEs which has the following properties: The phase portrait contains a stable line $x_{1}=x_{2}=x_{3}$ and the ellipse $x_{1}^{2}+4 x_{2}^{2}=16$.
6. (30 points) Consider a mass on a spring whose motion is governed by

$$
x^{\prime \prime}+x=0 .
$$

Determine initial conditions x_{0}, v_{0} (i.e., so $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$) which allow one to stop the mass completely after time $t=2 \pi$ by applying the impulse

$$
I_{\lambda, \tau}(t)=\left\{\begin{array}{cc}
\lambda & \pi<t<\pi+\tau \\
0 & \text { otherwise },
\end{array}\right.
$$

where $\lambda \geq 0$ and $0 \leq \tau \leq 2 \pi$.
7. (20 points) Let

$$
f(t)=\left\{\begin{array}{cc}
2 \cos 2 t & t<1 \\
10 t & 1 \leq t 4 \\
e^{-t} & t \geq 4
\end{array}\right.
$$

and consider the second order equation

$$
\left\{\begin{array}{c}
x^{\prime \prime}+2 x=f(t) \\
x(0)=0, x^{\prime}(0)=1 .
\end{array}\right.
$$

(a) (10 points) Determine $X(s)$, the Laplace transform of the solution.
(b) (10 points) Compute $\mathcal{L}^{-1}\{X(s)\}$. For what values of t does this give a valid solution?
8. (30 points) Consider the ODE

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}+8 x=g(t) \\
x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0 .
\end{array}\right.
$$

(a) (10 points) Show that for $g(t) \equiv 0$, the solution is bounded.
(b) (10 points) Find a forcing $g(t)$ so that the solution $x(t)$ has the property $\lim _{t \rightarrow \infty} e^{-2 t} x(t)=1$.
(c) (10 points) Find a forcing so that $x(t)$ is unbounded, but, for t large, $|x(t)| \leq|t|$.

