Solutions Final Exam

1. (20 points) Determine a 3×3 linear system of ODEs whose phase portrait

- contains an unstable line $x_{1}=2 x_{3}, x_{2}=0$; and
- contains the circle given by the intersection of the plane $x_{1}+x_{2}=0$ with the unit sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$.
(Hint: Consider orthogonal unit length vectors in the plane $x_{1}+x_{2}=0$.)

First of all we give a possible normal form for such a system. The given information tells us that

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

is such an example. Indeed, the corresponding system has the eigenvector \mathbf{e}_{1} spanning an unstable line and the plane spanned by \mathbf{e}_{2} and \mathbf{e}_{3} contains circles.
We now need to find the linear transformation T that transforms this matrix into the desired one, i.e. so $A=T B T^{-1}$. Observe that if $\mathbf{X}(t)$ solves

$$
\mathbf{X}^{\prime}=B \cdot \mathbf{X}
$$

then $\mathbf{Y}=T \cdot \mathbf{X}$ solves

$$
\mathbf{Y}^{\prime}=\left(T B T^{-1}\right) \cdot \mathbf{Y}=A \cdot \mathbf{Y}
$$

Hence, if $T \cdot \mathbf{e}_{1}=2 \mathbf{e}_{1}+\mathbf{e}_{3}$, then $T \cdot \mathbf{e}_{1}$ spans the desired unstable line. Similarly, we observe that

$$
\mathbf{e}_{3}
$$

and

$$
\frac{\sqrt{2}}{2} \mathbf{e}_{1}-\frac{\sqrt{2}}{2} \mathbf{e}_{2}
$$

span the plane $x_{1}+x_{2}=0$, are unit length and are perpendicular. Hence, its enough to have $T \cdot \mathbf{e}_{2}=\mathbf{e}_{3}$ and $T \cdot \mathbf{e}_{3}=\frac{\sqrt{2}}{2} \mathbf{e}_{1}-\frac{\sqrt{2}}{2} \mathbf{e}_{2}$. That is,

$$
T=\left(\begin{array}{ccc}
2 & 0 & \frac{\sqrt{2}}{2} \\
0 & 0 & -\frac{\sqrt{2}}{2} \\
1 & 1 & 0
\end{array}\right)
$$

Hence,

$$
\begin{gathered}
A=T B T^{-1}=\left(\begin{array}{ccc}
2 & 0 & \frac{\sqrt{2}}{2} \\
0 & 0 & -\frac{\sqrt{2}}{2} \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & -1 / 2 & 1 \\
0 & -\sqrt{2} & 0
\end{array}\right) \\
=\left(\begin{array}{ccc}
1-\frac{\sqrt{2}}{4} & 1-\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{2} \\
\frac{1}{2} & \frac{1}{2}+\sqrt{2} & 0
\end{array}\right)
\end{gathered}
$$

2. Consider the forced 2×2 linear system

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}+\binom{1}{-1} \quad \text { where } \quad A=\left(\begin{array}{ll}
1 & -4 \\
2 & -3
\end{array}\right)
$$

(a) (10 points) Compute the matrix exponential $e^{t A}$.

The characteristic polynomial is

$$
p_{A}(\lambda)=\lambda^{2}+2 \lambda+5
$$

which has roots

$$
\lambda=-1 \pm 2 i .
$$

The eigenvectors are found by solving

$$
\left(\begin{array}{cc}
2-2 i & -4 \\
2 & -2-2 i
\end{array}\right)\binom{z_{1}}{z_{2}}=0
$$

that is

$$
\binom{z_{1}}{z_{2}}=\binom{1+i}{1}
$$

Hence,

$$
T=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), T^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
T^{-1} A T=\left(\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right)
$$

Hence,

$$
e^{A t}=T e^{T^{-1} A T t} T^{-1}=T e^{-t}\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right) T^{-1}=e^{-t}\left(\begin{array}{cc}
\cos 2 t+\sin 2 t & -2 \sin 2 t \\
\sin 2 t & \cos 2 t-\sin 2 t
\end{array}\right)
$$

(b) (10 points) Find a particular solution to the equation (you may use any method you like).

We guess that the solution is of the form

$$
\mathbf{Y}_{P}(t)=\binom{a}{b}
$$

for a and b to be determined. For this to occur we must have

$$
\binom{0}{0}=\binom{a-4 b}{2 a-3 b}+\binom{1}{-1}
$$

Hence,

$$
b=\frac{3}{5}, a=\frac{7}{5} .
$$

and so

$$
\mathbf{Y}_{P}(t)=\frac{1}{5}\binom{7}{3}
$$

3. (30 points) Consider a mass on a spring whose motion is governed by

$$
x^{\prime \prime}+4 x=0
$$

Determine if it is possibly to completely stop the mass after time $t=2 \pi$ by applying the impulse

$$
I_{\lambda, \tau}(t)=\left\{\begin{array}{cc}
\lambda & \pi<t<\pi+\tau \\
0 & \text { otherwise },
\end{array}\right.
$$

where $0 \leq \lambda$ and $0 \leq \tau<\pi$ when $x_{0} \leq 0$ and v_{0} is arbitrary. Here $x_{0}=x(0)$ and $v_{0}=x^{\prime}(0)$ are the initial conditions.

Set $y(t)=x(2 \pi-t)$. We compute that y satisfies the IVP

$$
y^{\prime \prime}+4 y=I_{\lambda, \tau}(2 \pi-t)=\lambda H_{\pi-\tau}(t)-\lambda H_{\pi}(t)
$$

where H_{a} is the Heaviside function. We have that $y(2 \pi)=x(0)=x_{0}$ and $y^{\prime}(2 \pi)=-x^{\prime}(0)=-v_{0}$ and $y(0)=y^{\prime}(0)=0$. Computing the Laplace transform $Y(s)$ of y we have

$$
\left(s^{2}+4\right) Y(s)=\frac{\lambda e^{-(\pi-\tau) s}}{s}-\frac{\lambda e^{-\pi s}}{s}
$$

Since

$$
\frac{1}{\left(s^{2}+4\right) s}=\frac{1}{4}\left(\frac{s}{s^{2}+4}-\frac{1}{s}\right)
$$

We have

$$
Y(s)=\frac{\lambda}{4}\left(\frac{s\left(e^{-\pi s}-e^{-(\pi-\tau) s}\right)}{s^{2}+4}-\frac{e^{-\pi s}-e^{-(\pi-\tau) s}}{s}\right)
$$

and so

$$
y(t)=\frac{\lambda}{4}\left(H_{\pi-\tau}(t)-H_{\pi}(t)\right)-\frac{\lambda}{4}\left(H_{\pi-\tau}(t) \cos 2(t-\pi+\tau)-H_{\pi}(t) \cos 2(t-\pi)\right)
$$

For $t>\pi$ this gives

$$
y(t)=\frac{\lambda}{4}(\cos 2(t-\pi)-\cos 2(t-\pi+\tau))
$$

and so

$$
x_{0}=\frac{\lambda}{4}(\cos 2 \pi-\cos (2 \pi+2 \tau))=\frac{\lambda}{4}(1-\cos 2 \tau)=\frac{\lambda}{2} \sin ^{2} \tau \geq 0
$$

and likewise

$$
v_{0}=-\frac{\lambda}{4} \sin 2 \tau=-\frac{\lambda}{2} \sin \tau \cos \tau
$$

It is not possible to stop the mass unless $x_{0}=0$, since we are told $x_{0} \leq 0$ but must have $x_{0} \geq 0$. Furthermore, if $x_{0}=0$, then either $\lambda=0$ or $\sin \tau=0$ and in either case we must also have $v_{0}=0$, i.e., it is only possible to stop the if $\left(x_{0}, v_{0}\right)=(0,0)$.
4. Directly using the definition of the Laplace transform show that:
(a) (10 points) $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ for $s>a$.

By definition

$$
\begin{aligned}
\mathcal{L}\left\{e^{a t}\right\}(s) & =\lim _{L \rightarrow \infty} \int_{0}^{L} e^{a t} e^{-s t} d t \\
& =\lim _{L \rightarrow \infty} \int_{0}^{L} e^{(a-s) t} d t \\
& =\lim _{L \rightarrow \infty} \frac{e^{(a-s) L}-1}{a-s} \\
& =\frac{1}{s-a}+\frac{1}{a-s} \lim _{L \rightarrow \infty} e^{(a-s) L} \\
& =\frac{1}{s-a}
\end{aligned}
$$

where the last equality holds because $a-s<0$ (otherwise the limit is infinite).
(b) (10 points) $\mathcal{L}\left\{H_{a}(t)\right\}=\frac{e^{-a s}}{s}$ for $s, a \geq 0$.

By definition

$$
\begin{aligned}
\mathcal{L}\left\{H_{a}(t)\right\}(s) & =\lim _{L \rightarrow \infty} \int_{0}^{L} H_{a}(t) e^{-s t} d t \\
& =\lim _{L \rightarrow \infty} \int_{a}^{L} e^{-s t} d t \\
& =\lim _{L \rightarrow \infty} \frac{e^{-s L}-e^{-a s}}{-s} \\
& =\frac{e^{-a s}}{s}-\frac{1}{s} \lim _{L \rightarrow \infty} e^{-s L} \\
& =\frac{e^{-a s}}{s}
\end{aligned}
$$

here the second equaltity used that $a \geq 0$ and the last used that $s>0$.
5. Consider the ODE

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}-x=g(t) \\
x(0)=a, x^{\prime}(0)=b, x^{\prime \prime}(0)=c .
\end{array}\right.
$$

(a) (10 points) If $g(t) \equiv 0$, determine all the initial conditions a, b, c so that the solution is bounded for $t \geq 0$.

Let $X(s)=\mathcal{L}\{x(t)\}$. We have that

$$
\left(s^{3}-1\right) X(s)-a s^{2}-b s-c=0
$$

In order for the solution to be bounded for $t \geq 0$, we must have that $X(s)$ has no poles with real part that is positive. As

$$
X(s)=\frac{a s^{2}+b s+c}{s^{3}-1}=\frac{a s^{2}+b s+c}{(s-1)\left(s^{2}+s+1\right)}
$$

we see that this occurs if and only if $a s^{2}+b s+c$ has a root at $s=1$. That is, $a+b+c=0$.
(b) (10 points) Find a forcing $g(t)$ so that the solution $x(t)$ has the property $\lim _{t \rightarrow \infty} e^{-2 t} x(t)=-2$.

As the zeros of the characteristic polynomial all have real part strictly less than 2 , it suffices, by the Final Value Theorem, to find a function $g(t)$ which has Laplace transform with a simple pole at $s=2$ An example of this is $g(t)=\alpha e^{2 t}$ for $\alpha \neq 0$. Indeed, then

$$
G(s)=\mathcal{L}\{g(t)\}=\frac{\alpha}{s-2}
$$

We allow α to be determined in order to get the correct limit. In this case, we have

$$
X(s)=\frac{a s^{2}+b s+c}{s^{3}-1}+\frac{a s^{2}+b s+c}{s^{3}-1}+\alpha \frac{1}{(s-2)\left(s^{3}-1\right)}
$$

The final value theorem implies that

$$
\lim _{t \rightarrow \infty} e^{-2 t} x(t)=\lim _{s \rightarrow 2}(s-2) X(s)=\frac{\alpha}{7}
$$

Hence, $\alpha=-14$.
(c) (10 points) Assume the initial conditions satisfy $a=b=c=0$, find a forcing so that $x(t)$ is unbounded, but, for t large, $|x(t)| \leq C|t|$ for some $C>0$.

Such a solution is consistent with resonance phenomena. In particular, if $g(t)$ is the forcing and $G(s)=\mathcal{L}\{g(t)\}$, then we have that

$$
X(s)=\frac{G(s)}{s^{3}-1}
$$

we need $G(s)$ to have double poles on the real axis and no other poles with real part greater than or equal to 0 . For instance, the function

$$
G(s)=\frac{(s-1)}{s^{2}}
$$

satisfies these conditions. Hence,

$$
g(t)=\mathcal{L}^{-1}\left\{\frac{s-1}{s^{2}}\right\}=1-t
$$

is an example of the desired forcing.
6. Consider the planar system

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{\left(x_{2}^{2}-x_{2}\right)\left(2 x_{2}-1\right)}{-x_{1}}
$$

(a) (10 points) Determine all equilibria of the system and classify their type (if possible) using the linearized equation.

Clearly the equalibria occur when $x_{1}=0$ and $x_{2}=0, \frac{1}{2}$ or 1 . The linearized system at $(0,0)$ is

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot \mathbf{Y}
$$

this has trace zero and determinant 1 so is not hyperbolic and so nothing can be said about the equilibria from this. The linearized system at $\left(0, \frac{1}{2}\right)$ is

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
0 & -\frac{1}{2} \\
-1 & 0
\end{array}\right) \cdot \mathbf{Y}
$$

this has trace zero and determinant $-1 / 2$ and so is hyperbolic and is a saddle and so the equilibrium is a nonlinear saddle. The lineaized system at $(0,1)$ is

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot \mathbf{Y}
$$

this has trace zero and determinant 1 so is not hyperbolic and so nothing can be said about the equilibria from this.
(b) (10 points) Verify that the function

$$
L\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{2}^{2}\left(x_{2}-1\right)^{2}+x_{1}^{2}\right)
$$

is a Lyapunov function for the system.
We compute that

$$
\begin{aligned}
\dot{L}\left(x_{1}, x_{2}\right) & =\frac{\partial L}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial L}{\partial x_{2}} x_{2}^{\prime} \\
& =x_{1}\left(x_{2}^{2}-x_{2}\right)\left(2 x_{2}-1\right)-\left(x_{2}^{2}-x_{2}\right)\left(2 x_{2}-1\right) x_{1} \\
& =0
\end{aligned}
$$

and so L is a Lyapunov function for the system (but not a strict one). Indeed, the system is Hamiltonian with Hamiltonian L.
(c) (10 points) Using L, what more can you say about the stability of the equilibria?

We observe that L has strict minima at $(0,0)$ and $(0,1)$ (this is becasue $L \geq 0$ and $L(0,0)=$ $L(0,1)=0)$. Hence, since L is a Lyapunov function that is never strict, $(0,0)$ and $(0,1)$ are stable equilibria and are not asymptotically stable.
7. (20 points) Give an example of an planar system for which the set $\Omega=\{\mathbf{X}:|\mathbf{X}|<1\}$ is positively invariant and contains only one sink, \mathbf{X}_{0}, but the basin of attraction of \mathbf{X}_{0} is strictly smaller than Ω. (Recall, a region is postively invariant if no solution with initial condition in Ω leaves Ω for $t \geq 0$).

By the Poincare-Bendixson theorem, the only way this could occur is if there was a closed orbit in Ω. The easiest way to construct such a solution rigorously is using polar coordinates. In polar coordinates, an example of the desired system would be of the form

$$
\left\{\begin{array}{c}
r^{\prime}=-r\left(1-4 r^{2}\right)^{2} \\
\theta^{\prime}=1
\end{array}\right.
$$

Notice, that for all $r \geq 0, r^{\prime} \leq 0$ and so Ω is postively invariant. However, there is a closed orbit with $r=\frac{1}{2}$ and so the basin of attraction of $r=0$ is contained inside of $\left\{r<\frac{1}{2}\right\}$. We can turn this into a system in cartesian coordinates by observing that $x_{1}=r \cos \theta$ so

$$
x_{1}^{\prime}=r^{\prime} \cos \theta-r \sin \theta \theta^{\prime}=-x_{1}\left(1-4\left(x_{1}^{2}+x_{2}^{2}\right)^{2}-x_{2}\right.
$$

and

$$
x_{2}^{\prime}=r^{\prime} \sin \theta+r \cos \theta \theta^{\prime}=-x_{2}\left(1-4\left(x_{1}^{2}+x_{2}^{2}\right)\right)^{2}+x_{1} .
$$

8. Consider the following system

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{-4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{1}}{-4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{2}-12 x_{2}}
$$

(a) (10 points) Show this is a gradient system by determining the function V so that $\mathbf{X}^{\prime}=-\nabla V$

Suppose that V was such a function. Then we would have

$$
\frac{d}{d x_{1}} V=4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{1}
$$

Integrating we see that

$$
V=x_{1}^{4}+2 x_{2}^{2} x_{1}^{2}-8 x_{1}^{2}+h\left(x_{2}\right)
$$

Hence,

$$
4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{2}+12 x_{2}=\frac{d}{d x_{2}} V=4 x_{2} x_{1}^{2}+h^{\prime}\left(x_{2}\right)
$$

and so

$$
h^{\prime}\left(x_{2}\right)=4 x_{2}^{3}-16 x_{2}+12 x_{2}
$$

that is

$$
h\left(x_{2}\right)=x_{2}^{4}-8 x_{2}^{2}+6 x_{2}^{2}
$$

so

$$
V\left(x_{1}, x_{2}\right)=x_{1}^{4}+2 x_{1}^{2} x_{2}^{2}+x_{2}^{4}-8\left(x_{1}^{2}+x_{2}^{2}\right)+6 x_{2}^{2}=\left(x_{1}^{2}+x_{2}^{2}-4\right)^{2}-16+6 x_{2}^{2}
$$

(b) (10 points) Determine all equilibria of the system and classify their type (if possible) using the linearized equation. (Hint: there are five in total).

For an equilibrium to appear we first must first have $-4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{1}=0$. This can only happen if $x_{1}=0$ or if $x_{1}^{2}+x_{2}^{2}=4$. We must also have $-4\left(x_{1}^{2}+x_{2}^{2}-4\right) x_{2}-12 x_{2}=0$. In the case that $x_{1}=0$, this reduces to $-4 x_{2}^{3}+4 x_{2}=-4 x_{2}\left(x_{2}^{2}-1\right)$. In particular, we have equilibria at $(0,0)$ and $(0, \pm 1)$. In the case that, $x_{1}^{2}+x_{2}^{2}=4$ we have that $x_{2}=0$ and so $x_{1}= \pm 2$ i.e. $(\pm 2,0)$ are also equlibria.
If (x_{1}, x_{2}) is an equlibria we compute that the variational equation is

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
-4\left(x_{1}^{2}+x_{2}^{2}-4\right)-8 x_{1}^{2} & -8 x_{1} x_{2} \\
-8 x_{1} x_{2} & -4\left(x_{1}^{2}+x_{2}^{2}-4\right)-8 x_{2}^{2}-12
\end{array}\right) \cdot \mathbf{Y}
$$

At $(0,0)$ we obtain the linearized matrix

$$
\left(\begin{array}{cc}
16 & 0 \\
0 & 4
\end{array}\right)
$$

which has two positive eigenvalues so is a source. At $(0, \pm 1)$ we obtain the linearized matrix

$$
\left(\begin{array}{cc}
12 & 0 \\
0 & -8
\end{array}\right)
$$

which has a positive and a negative eigenvalue and so is hyperbolic and is a saddle. At $(\pm 2,0)$ the linearized matrix is

$$
\left(\begin{array}{cc}
-32 & 0 \\
0 & -12
\end{array}\right)
$$

this has strictly negative eigenvalues and so both equlibria are sinks.
(c) (10 points) Using the V you found in part a), determine the largest value V_{0} so that all points, \mathbf{X}, with $V(\mathbf{X})<V_{0}$ are in the basin of attraction of a sink of the system.

Observe first that V is a strict Lyapunov function for the system away from the critical points of V. We have that at the two sinks $(\pm 2,0)$ that $V=-16$ (note that we could have always added a constant when finding V so this value is arbitrary). While at the saddle equlibria $(0, \pm 1)$ we have $V=-1$ and at the source $(0,0)$ we have $V=0$. Hence, as long as $-16<V(\mathbf{X})<-1$ we have that V strictly decreases along a solution to the system with initial value \mathbf{X} and so the basin of attraction of the sinks is contained with in the set $\{\mathbf{X}: V(\mathbf{X})<-1\}$.

