Practice Midterm Exam 1

1. Find all solutions $y=y(x)$ to the following initial value problems (remember to include domain):
(a) (10 points)

$$
\left\{\begin{array}{c}
y^{\prime}=\left(1+y^{2}\right) x \\
y(0)=1
\end{array}\right.
$$

(b) (10 points)

$$
\left\{\begin{array}{l}
y^{\prime}=y^{2 / 3} \\
y(0)=0
\end{array}\right.
$$

2. Put the following matrices in canonical form (i.e., Jordan normal form).
(a) (10 points)

$$
A_{1}=\left(\begin{array}{ll}
-1 & 1 \\
-9 & 5
\end{array}\right)
$$

(b) (10 points)

$$
A_{2}=\left(\begin{array}{cc}
1 & 2 \\
-4 & -3
\end{array}\right)
$$

3. Determine a 2×2 linear system of ODEs which has the following properties:
(a) (10 points) The phase portrait contains a stable line $y=3 x$ and an unstable line $x=0$.
(b) (10 points) The phase portrait contains the ellipse $5 x^{2}-4 x y+y^{2}=20$.
4. (20 points) Find the general solution to the the following 3×3 linear system:

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{ccc}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right) \mathbf{Y}
$$

5. Consider the following one-parameter family of autonomous ODEs

$$
y^{\prime}=F_{a}(y)=\frac{y}{1+y^{2}}-a y
$$

(a) (10 points) Draw the bifurcation diagram for this family of ODEs.
(b) (10 points) Show that there is a value a_{0} so that if $a_{-}<a_{0}$ and $a_{+}>a_{0}$, then the systems $y^{\prime}=F_{a_{-}}(y)$ and $y^{\prime}=F_{a_{+}}(y)$ are not topologically conjugate (Hint: Do not try and solve the ODEs explicitly).

