
Solutions Midterm Exam 1

1. Find all solutions y = y(x) to the following initial value problems (remember to include domain):

(a) (10 points) {
x2y′ = y(1 + y2)

y(0) = 0

(Hint: use that 1
y(1+y2)

= 1
y −

y
y2+1

).

We first observe that this ODE is poorly behaved when x = 0 and so we should take care.
With that in mind, we separate variables and see that any non-zero solution must satisfy
(away from x = 0)

y′

y(1 + y2)
=

1

x2

That is (by some calculus),

d

dy

(
ln |y| − 1

2
ln(1 + y2)

)
=

d

dx

(
−1

x
+ C0

)
That is,

|y|√
1 + y2

= e−1/x+C0

which we recognize as
y√

1 + y2
= Ce−1/x

Solving for y, gives

y =
Ce−1/x√

1− C2e−2/x
.

We observe that on the one hand, if C = 0, they y(x) = 0 for all x and so is a global solution.
On the other hand, if C 6= 0, then this function is not continuous at 0. However, the piecewise,
function

y(x) =

{
0 x ≤ 0

Ce−1/x√
1−C2e−2/x

x > 0

is continuous (even differentiable) at x = 0 and solves the IVP. However, this solution has
another singularity if it ever happens that

1− C2e−2/x = 0

which occurs when x = 1
ln |C| Notice, this is positive real only when |C| > 1 i.e. there is no

singularity for −1 ≤ C ≤ 1. Putting this all together, we obtain that all solutions are of the
form

y(x) =

{
0 x ≤ 0

Ce−1/x√
1−C2e−2/x

x > 0

which has domain (−∞,∞) for −1 ≤ C ≤ 1 and (−∞, 1
ln |C|) for |C| > 1.
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(b) (10 points) {
y′ = |y|3/2
y(0) = 1

Separating variables, we obtain

y′

|y|3/2
=

d

dy

(
−2|y|−1/2

)
=

d

dx
(x+ C0)

That is,

|y| = 4

(x+ C0)2

note that (by inspection)

y =
4

(x+ C0)2
> 0

is only a solution for x < −C0 while

y = − 4

(x+ C0)2
< 0

is only a solutions for x > −C0. There is also the global solution y(x) = 0 (corresponding
to C0 = ∞). Hence, to satisfy the initial condition we must have C0 < 0. In this case, one
checks that C0 = −2. Hence, the solution is given by

y(x) =
4

(x− 2)2

which has domain (−∞, 2). Note, that each choice of initial condiiton gives a unique choice
of C0, so this is the unique solution.
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2. Put the following matrices in canonical form (i.e., Jordan normal form). That is, find an invertible
matrix T so that T−1AT is in canonical form (and determine this form).

(a) (10 points)

A1 =

(
2 9
−1 −4

)

The characteristic polynomial is λ2 + 2 + 1 = (λ + 1)2 and so their is one eigenvalue with
algebraic multiplicity 2. Since, the matrix is not diagonal, this eigenvalue has geometric
multiplicity 1. Solving the system

(A1 − (−1)I)v = 0

one finds that

v =

(
3
−1

)
is an eigenvector. Any other vector which is linearly independent will work as a generalized
eigenvector i.e., a solution to

(A1 − (−1)I)w = αv

for α 6= 0 and so we choose

w =

(
1
0

)
.

Notice that

(A1 − (−1)I)

(
1
0

)
=

(
3
−1

)
= v

so in this case α = 1 (otherwise we would multiply w by α−1). Hence,

T =
(
v w

)
=

(
3 1
−1 0

)
is invertible and puts A1 in canonical form, i.e.,

T−1A1T =

(
−1 α
0 −1

)
=

(
−1 1
0 −1

)
.

Note that T is not unique.
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(b) (10 points)

A2 =

(
5 10
−1 −1

)

The characteristic polynomial is λ2−4λ+ 5 = (λ−2)2 + 1 and so A2 has complex eigenvalues
2± i. One finds a complex eigenvector by solving

(A2 − (2 + i)I) z = 0

which gives

z =

(
1− 3i
i

)
=

(
1
0

)
+ i

(
−3
1

)
= x + iy.

Hence, setting

T =
(
x y

)
=

(
1 −3
0 1

)
gives

T−1A2T =

(
2 1
−1 2

)
which is the canonical form.
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3. Determine a 2× 2 linear system of ODEs which has the following properties:

(a) (10 points) The phase portrait contains a stable line y = 2x and no other stable or unstable lines.

The desired matrix A must have repeated negative eigenvalue (as this is the only way to have
a single stable line). As such, we may take its canonical form to be(

−1 1
0 −1

)
which has as its unstable line the x-axis. To finish the problem, we need to find a linear
transformation T so that

T−1AT =

(
−1 1
0 −1

)
To do so, we observe that A must have its sole eigenvector on the line y = 2x – i.e. be of

the form v =

(
1
2

)
which gives the first column of A. The generalized eigenvector can be any

vector linearly independent of v, for instance e2, so we may take

T =

(
1 0
2 1

)
and

A = T

(
−1 1
0 −1

)
T−1 =

(
1 0
2 1

)(
−1 1
0 −1

)(
1 0
−2 1

)
=

(
−3 1
−4 1

)
.

(b) (10 points) The phase portrait contains the ellipse x2 + 4y2 = 16.

The desired matrix A must purely imaginary eigenvalues. We take ±i. Hence, its canonical
form is (

0 1
−1 0

)
.

The phase portrait of this matrix consists of concentric circles. We now need to find the
matrix T . To do so it suffices to observe that the matrix T takes the phase diagram of the
canonical system to the phase diagram of A. Since the ellipse x2 +4y2 = 16 = x2 +(2y)2 = 16
is obtained from the circle x2 + y2 = 16 by sending (x, y) 7→ (x, y/2) we may take

T =

(
1 0
0 1/2

)
so

A = T

(
0 1
−1 0

)
T−1 =

(
1 0
0 1/2

)(
0 1
−1 0

)(
1 0
0 2

)
=

(
0 2
−1/2 0

)
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4. Consider

A =

 1 1 2
−5 −5 −2
1 −1 0


(a) (10 points) Find the general solution to the the 3× 3 linear system:

Y′ = AY

The characteristic polynomial is −λ3 − 4λ2 + 4λ+ 16 = −(λ− 2)(λ+ 2)(λ+ 4). A remark on
how to factor this – if the roots are integers (which is likely for an exam problem) then they
must divide the constant term. Hence, the eigenvalues of the matrix are −4,−2, 2 with (after
some computation) corresponding eigenvectors−1

3
1

 ,

−1
1
1

 ,

 1
−1
1


so

T =

−1 −1 1
3 1 −1
1 1 1


is invertible and

T−1AT =

−4 0 0
0 −2 0
0 0 2


Hence, the general solution is

Y(t) = T

e−4t 0 0
0 e−2t 0
0 0 e2t

c1c2
c3

 =

−1 −1 1
3 1 −1
1 1 1

e−4t 0 0
0 e−2t 0
0 0 e2t

c1c2
c3


= c1e

−4t

−1
3
1

+ c2e
−2t

−1
1
1

+ c3e
2t

 1
−1
1


(b) (10 points) Solve the inital value problem

Y′ = AY

Y(0) =

1
0
0



By the above

Y(0) = T

c1c2
c3


so (two steps of Gaussian elimination reduces T to upper triangular form)c1c2

c3

 = T−1

1
0
0

 =

1/2
−1
1/2


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5. Consider the following one-parameter family of autonomous ODEs

y′ = Fa(y) =
a

1 + y2
+ y2

(a) (10 points) Draw the bifurcation diagram for this family of ODEs.

One first finds the equilibria of the family of ODEs. That is determines when

0 = Fa(y) =
a

1 + y2
+ y2

since 1 + y2 is never zero this is equivalent to solving

0 = y4 + y2 + a = 0 = (y2 +
1

2
)2 + a− 1

4
.

In particular, there are no solutions if a > 1
4 on the other hand, if a ≤ 1

4 then y2 =
√

1
4 − a−

1
2

(note taking negative square root is always negative so can’t have a solution). Notice, that
this has no solutions unless 1

4 − a ≥ 1
4 . That is, a ≤ 0 < 1

4 . Once, a ≤ 0 there are two
solutions of opposite sign. So the equilibria look sort of like a parabola on its side opening
in the negative a direction. As Fa(0) > 0 for a > 0, we see that all solutions increase in this
range (so the arrows are up) while for a < 0, one has Fa(0) < 0 while for y with |y| large,
Fa(y) > 0 so the arrows are down inside the parabola and up outside of it.

(b) (10 points) Show that there is a value a0 so that if a− < a0 and a+ > a0, then the systems
y′ = Fa−(y) and y′ = Fa+(y) are not topologically conjugate (Hint: Do not try and solve the
ODEs explicitly).

The value a0 = 0 is such a number. Indeed, let φ
a−
t and φ

a+
t be the corresponding flows. If

these were conjugate there would be a homoemorphism (i.e 1-1, onto and continuous with
continuous inverse) so that φ

a+
t (h(y0)) = h(φ

a−
t (y0)) for all y0. Letting y0 be one of the

equilibria of y′ = Fa−(y), we have that limt→∞ h(φ
a−
t (y0)) = h(y0) a finite number but

limt∞(φ
a+
t (h(y0))) =∞ so the two can’t be conjugate.


