Solutions Midterm Exam 1

1. Find all solutions $y=y(x)$ to the following initial value problems (remember to include domain):
(a) (10 points)

$$
\left\{\begin{array}{c}
x^{2} y^{\prime}=y\left(1+y^{2}\right) \\
y(0)=0
\end{array}\right.
$$

(Hint: use that $\frac{1}{y\left(1+y^{2}\right)}=\frac{1}{y}-\frac{y}{y^{2}+1}$).
We first observe that this ODE is poorly behaved when $x=0$ and so we should take care. With that in mind, we separate variables and see that any non-zero solution must satisfy (away from $x=0$)

$$
\frac{y^{\prime}}{y\left(1+y^{2}\right)}=\frac{1}{x^{2}}
$$

That is (by some calculus),

$$
\frac{d}{d y}\left(\ln |y|-\frac{1}{2} \ln \left(1+y^{2}\right)\right)=\frac{d}{d x}\left(-\frac{1}{x}+C_{0}\right)
$$

That is,

$$
\frac{|y|}{\sqrt{1+y^{2}}}=e^{-1 / x+C_{0}}
$$

which we recognize as

$$
\frac{y}{\sqrt{1+y^{2}}}=C e^{-1 / x}
$$

Solving for y, gives

$$
y=\frac{C e^{-1 / x}}{\sqrt{1-C^{2} e^{-2 / x}}}
$$

We observe that on the one hand, if $C=0$, they $y(x)=0$ for all x and so is a global solution. On the other hand, if $C \neq 0$, then this function is not continuous at 0 . However, the piecewise, function

$$
y(x)=\left\{\begin{array}{cl}
0 & x \leq 0 \\
\frac{C e^{-1 / x}}{\sqrt{1-C^{2} e^{-2 / x}}} & x>0
\end{array}\right.
$$

is continuous (even differentiable) at $x=0$ and solves the IVP. However, this solution has another singularity if it ever happens that

$$
1-C^{2} e^{-2 / x}=0
$$

which occurs when $x=\frac{1}{\ln |C|}$ Notice, this is positive real only when $|C|>1$ i.e. there is no singularity for $-1 \leq C \leq 1$. Putting this all together, we obtain that all solutions are of the form

$$
y(x)=\left\{\begin{array}{cl}
0 & x \leq 0 \\
\frac{C e^{-1 / x}}{\sqrt{1-C^{2} e^{-2 / x}}} & x>0
\end{array}\right.
$$

which has domain $(-\infty, \infty)$ for $-1 \leq C \leq 1$ and $\left(-\infty, \frac{1}{\ln |C|}\right)$ for $|C|>1$.
(b) (10 points)

$$
\left\{\begin{array}{c}
y^{\prime}=|y|^{3 / 2} \\
y(0)=1
\end{array}\right.
$$

Separating variables, we obtain

$$
\frac{y^{\prime}}{|y|^{3 / 2}}=\frac{d}{d y}\left(-2|y|^{-1 / 2}\right)=\frac{d}{d x}\left(x+C_{0}\right)
$$

That is,

$$
|y|=\frac{4}{\left(x+C_{0}\right)^{2}}
$$

note that (by inspection)

$$
y=\frac{4}{\left(x+C_{0}\right)^{2}}>0
$$

is only a solution for $x<-C_{0}$ while

$$
y=-\frac{4}{\left(x+C_{0}\right)^{2}}<0
$$

is only a solutions for $x>-C_{0}$. There is also the global solution $y(x)=0$ (corresponding to $C_{0}=\infty$). Hence, to satisfy the initial condition we must have $C_{0}<0$. In this case, one checks that $C_{0}=-2$. Hence, the solution is given by

$$
y(x)=\frac{4}{(x-2)^{2}}
$$

which has domain $(-\infty, 2)$. Note, that each choice of initial condiiton gives a unique choice of C_{0}, so this is the unique solution.
2. Put the following matrices in canonical form (i.e., Jordan normal form). That is, find an invertible matrix T so that $T^{-1} A T$ is in canonical form (and determine this form).
(a) (10 points)

$$
A_{1}=\left(\begin{array}{cc}
2 & 9 \\
-1 & -4
\end{array}\right)
$$

The characteristic polynomial is $\lambda^{2}+2+1=(\lambda+1)^{2}$ and so their is one eigenvalue with algebraic multiplicity 2 . Since, the matrix is not diagonal, this eigenvalue has geometric multiplicity 1 . Solving the system

$$
\left(A_{1}-(-1) I\right) \mathbf{v}=0
$$

one finds that

$$
\mathbf{v}=\binom{3}{-1}
$$

is an eigenvector. Any other vector which is linearly independent will work as a generalized eigenvector i.e., a solution to

$$
\left(A_{1}-(-1) I\right) \mathbf{w}=\alpha \mathbf{v}
$$

for $\alpha \neq 0$ and so we choose

$$
\mathrm{w}=\binom{1}{0}
$$

Notice that

$$
\left(A_{1}-(-1) I\right)\binom{1}{0}=\binom{3}{-1}=\mathbf{v}
$$

so in this case $\alpha=1$ (otherwise we would multiply \mathbf{w} by α^{-1}). Hence,

$$
T=\left(\begin{array}{ll}
\mathbf{v} & \mathbf{w}
\end{array}\right)=\left(\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right)
$$

is invertible and puts A_{1} in canonical form, i.e.,

$$
T^{-1} A_{1} T=\left(\begin{array}{cc}
-1 & \alpha \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

Note that T is not unique.
(b) (10 points)

$$
A_{2}=\left(\begin{array}{cc}
5 & 10 \\
-1 & -1
\end{array}\right)
$$

The characteristic polynomial is $\lambda^{2}-4 \lambda+5=(\lambda-2)^{2}+1$ and so A_{2} has complex eigenvalues $2 \pm i$. One finds a complex eigenvector by solving

$$
\left(A_{2}-(2+i) I\right) \mathbf{z}=0
$$

which gives

$$
\mathbf{z}=\binom{1-3 i}{i}=\binom{1}{0}+i\binom{-3}{1}=\mathbf{x}+i \mathbf{y}
$$

Hence, setting

$$
T=\left(\begin{array}{ll}
\mathbf{x} & \mathbf{y}
\end{array}\right)=\left(\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right)
$$

gives

$$
T^{-1} A_{2} T=\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)
$$

which is the canonical form.
3. Determine a 2×2 linear system of ODEs which has the following properties:
(a) (10 points) The phase portrait contains a stable line $y=2 x$ and no other stable or unstable lines.

The desired matrix A must have repeated negative eigenvalue (as this is the only way to have a single stable line). As such, we may take its canonical form to be

$$
\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

which has as its unstable line the x-axis. To finish the problem, we need to find a linear transformation T so that

$$
T^{-1} A T=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

To do so, we observe that A must have its sole eigenvector on the line $y=2 x$ - i.e. be of the form $\mathbf{v}=\binom{1}{2}$ which gives the first column of A. The generalized eigenvector can be any vector linearly independent of \mathbf{v}, for instance \mathbf{e}_{2}, so we may take

$$
T=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

and

$$
A=T\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) T^{-1}=\left(\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{ll}
-3 & 1 \\
-4 & 1
\end{array}\right) .
$$

(b) (10 points) The phase portrait contains the ellipse $x^{2}+4 y^{2}=16$.

The desired matrix A must purely imaginary eigenvalues. We take $\pm i$. Hence, its canonical form is

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

The phase portrait of this matrix consists of concentric circles. We now need to find the matrix T. To do so it suffices to observe that the matrix T takes the phase diagram of the canonical system to the phase diagram of A. Since the ellipse $x^{2}+4 y^{2}=16=x^{2}+(2 y)^{2}=16$ is obtained from the circle $x^{2}+y^{2}=16$ by sending $(x, y) \mapsto(x, y / 2)$ we may take

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

so

$$
A=T\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) T^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 \\
-1 / 2 & 0
\end{array}\right)
$$

4. Consider

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -5 & -2 \\
1 & -1 & 0
\end{array}\right)
$$

(a) (10 points) Find the general solution to the the 3×3 linear system:

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}
$$

The characteristic polynomial is $-\lambda^{3}-4 \lambda^{2}+4 \lambda+16=-(\lambda-2)(\lambda+2)(\lambda+4)$. A remark on how to factor this - if the roots are integers (which is likely for an exam problem) then they must divide the constant term. Hence, the eigenvalues of the matrix are $-4,-2,2$ with (after some computation) corresponding eigenvectors

$$
\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

so

$$
T=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
3 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

is invertible and

$$
T^{-1} A T=\left(\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Hence, the general solution is

$$
\begin{aligned}
\mathbf{Y}(t) & =T\left(\begin{array}{ccc}
e^{-4 t} & 0 & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
3 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{-4 t} & 0 & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
& =c_{1} e^{-4 t}\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right)+c_{2} e^{-2 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)+c_{3} e^{2 t}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

(b) (10 points) Solve the inital value problem

$$
\left\{\begin{array}{c}
\mathbf{Y}^{\prime}=A Y \\
\mathbf{Y}(0)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{array}\right.
$$

By the above

$$
\mathbf{Y}(0)=T\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

so (two steps of Gaussian elimination reduces T to upper triangular form)

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=T^{-1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-1 \\
1 / 2
\end{array}\right)
$$

5. Consider the following one-parameter family of autonomous ODEs

$$
y^{\prime}=F_{a}(y)=\frac{a}{1+y^{2}}+y^{2}
$$

(a) (10 points) Draw the bifurcation diagram for this family of ODEs.

One first finds the equilibria of the family of ODEs. That is determines when

$$
0=F_{a}(y)=\frac{a}{1+y^{2}}+y^{2}
$$

since $1+y^{2}$ is never zero this is equivalent to solving

$$
0=y^{4}+y^{2}+a=0=\left(y^{2}+\frac{1}{2}\right)^{2}+a-\frac{1}{4} .
$$

In particular, there are no solutions if $a>\frac{1}{4}$ on the other hand, if $a \leq \frac{1}{4}$ then $y^{2}=\sqrt{\frac{1}{4}-a}-\frac{1}{2}$ (note taking negative square root is always negative so can't have a solution). Notice, that this has no solutions unless $\frac{1}{4}-a \geq \frac{1}{4}$. That is, $a \leq 0<\frac{1}{4}$. Once, $a \leq 0$ there are two solutions of opposite sign. So the equilibria look sort of like a parabola on its side opening in the negative a direction. As $F_{a}(0)>0$ for $a>0$, we see that all solutions increase in this range (so the arrows are up) while for $a<0$, one has $F_{a}(0)<0$ while for y with $|y|$ large, $F_{a}(y)>0$ so the arrows are down inside the parabola and up outside of it.
(b) (10 points) Show that there is a value a_{0} so that if $a_{-}<a_{0}$ and $a_{+}>a_{0}$, then the systems $y^{\prime}=F_{a_{-}}(y)$ and $y^{\prime}=F_{a_{+}}(y)$ are not topologically conjugate (Hint: Do not try and solve the ODEs explicitly).

The value $a_{0}=0$ is such a number. Indeed, let $\phi_{t}^{a_{-}}$and $\phi_{t}^{a_{+}}$be the corresponding flows. If these were conjugate there would be a homoemorphism (i.e 1-1, onto and continuous with continuous inverse) so that $\phi_{t}^{a_{+}}\left(h\left(y_{0}\right)\right)=h\left(\phi_{t}^{a_{-}}\left(y_{0}\right)\right)$ for all y_{0}. Letting y_{0} be one of the equilibria of $y^{\prime}=F_{a_{-}}(y)$, we have that $\lim _{t \rightarrow \infty} h\left(\phi_{t}^{a_{-}}\left(y_{0}\right)\right)=h\left(y_{0}\right)$ a finite number but $\lim _{t \infty}\left(\phi_{t}^{a_{+}}\left(h\left(y_{0}\right)\right)\right)=\infty$ so the two can't be conjugate.

