## Practice Midterm Exam 2

1. Consider the forced $2 \times 2$ linear system

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}+\binom{t e^{t}}{0} \quad \text { where } \quad A=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) .
$$

(a) (10 points) Compute the matrix exponential $e^{t A}$.
(b) (10 points) Find a particular solution to the equation (you may use any method you like).
2. (20 points) Consider a mass on a spring whose motion is governed by

$$
x^{\prime \prime}+x=0 .
$$

Determine initial conditions $x_{0}$, $v_{0}$ (i.e., so $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$ ) which allow one to stop the mass completely after time $t=\pi$ by a single blow with a hammer (transmitting any force $a$ ) at time $t=\pi$.
3. (20 points) Let $H_{a}(t)$ is the heaviside function which "turns on" at $t=a$. For $a>0$, consider the IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime}-x=(t-a) H_{a}(t)+1-H_{-1}(t) \\
x(0)=1, x^{\prime}(0)=0 .
\end{array}\right.
$$

(a) (10 points) Determine $X(s)$, the Laplace transform of the solution.
(b) (10 points) Compute $\mathcal{L}^{-1}\{X(s)\}$. For what values of $t$ does this give a valid solution?
4. (20 points) Consider the ODE

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}+x=g(t) \\
x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0 .
\end{array}\right.
$$

Determine a forcing $g(t)$ so that the solution $x(t)$ has the property that it grows larger, as $t \rightarrow \infty$, than any solution to the homogenous problem and larger than $g(t)$.
5. Consider the autonomous non-linear ODE

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{x_{2} \sin x_{1}}{x_{1}-x_{2}} .
$$

(a) (15 points) For any $\alpha \in \mathbb{R}$ consider the initial conditions:

$$
\binom{x_{1}(0)}{x_{2}(0)}=\binom{\pi}{\alpha} .
$$

Compute the the Picard iterates, $\mathbf{U}_{k}$, for these solutions and verify that they converge to a global solution to the IVP.
(b) (5 points) For each $\beta$, determine the variational equation along the solutions

$$
\binom{x_{1}(t)}{x_{2}(t)}=\binom{\pi}{\beta e^{-t}+\pi} .
$$

