Solutions Midterm Exam 2

1. Consider the forced 2×2 linear system

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}+\binom{-3 e^{t}}{5 e^{t}} \quad \text { where } \quad A=\left(\begin{array}{cc}
-14 & -9 \\
25 & 16
\end{array}\right)
$$

(a) (10 points) Compute the matrix exponential $e^{t A}$.

The characteristic polynomial of A is $p_{A}(\lambda)=\lambda^{2}-2 \lambda+1$. Hence, the there is one eigenvalue $\lambda=1$ with multiplicity 2 . The space of solutions to

$$
(A-I) \mathbf{v}=\left(\begin{array}{cc}
-15 & -9 \\
25 & 15
\end{array}\right) \mathbf{v}
$$

is spanned by the eigenvector

$$
\mathbf{v}=\binom{-3}{5}
$$

Similarly, a generalized eigenvector is given by

$$
\mathbf{w}=\binom{-1}{2}
$$

Hence, setting

$$
T=\left(\begin{array}{cc}
-3 & -1 \\
5 & 2
\end{array}\right)
$$

we have

$$
A=T\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) T^{-1}
$$

and so

$$
e^{t A}=T\left(\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right) T^{-1}=\left(\begin{array}{cc}
-3 & -1 \\
5 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right)\left(\begin{array}{cc}
-2 & -1 \\
5 & 3
\end{array}\right)=e^{t}\left(\begin{array}{cc}
1-15 t & -9 t \\
25 t & 1+15 t
\end{array}\right)
$$

(b) (10 points) Find a particular solution to the equation (you may use any method you like).

We use the variation of parameters formula to see that a particular solution is given by

$$
\begin{aligned}
\mathbf{Y}_{p} & =\int_{0}^{t} e^{(t-s) A}\binom{-3 e^{s}}{5 e^{s}} d s \\
& =e^{t A} \int_{0}^{t} e^{-s}\left(\begin{array}{cc}
1+15 s & 9 s \\
-25 s & 1-15 s
\end{array}\right)\binom{-3 e^{s}}{5 e^{s}} d s \\
& =e^{t A} \int_{0}^{t}\binom{-3}{5} d s \\
& =e^{t}\left(\begin{array}{cc}
1-15 t & -9 t \\
25 t & 1+15 t
\end{array}\right)\binom{-3 t}{5 t} \\
& =t e^{t}\binom{-3}{5}
\end{aligned}
$$

2. (20 points) Consider a mass on a spring whose motion is governed by

$$
x^{\prime \prime}+x=0 .
$$

Determine initial conditions x_{0}, v_{0} (i.e., so $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$) which allow one to stop the mass completely after time $t=\frac{\pi}{4}$ by a single blow with a hammer (transmitting any force a) at time $t=\frac{\pi}{4}$.

We turn this into a backwards in time problem. Specifically it is equivalent to solving the IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime}+x=0 \\
x\left(\frac{\pi}{4}\right)=0, x^{\prime}\left(\frac{\pi}{4}\right)=-a .
\end{array}\right.
$$

and determining $x(0)$ and $x^{\prime}(0)$. In any event, a general solution to this problem is given by $x(t)=c_{1} \cos t+c_{2} \sin t$
The initial conditions imply

$$
\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}=0
$$

and

$$
-\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2}=-a
$$

so

$$
x(t)=\frac{\sqrt{2}}{2} a \cos t-\frac{\sqrt{2}}{2} a \sin t
$$

Hence,

$$
x_{0}(0)=\frac{\sqrt{2}}{2} a
$$

and

$$
v_{0}=x^{\prime}(0)=-\frac{\sqrt{2}}{2} a
$$

where $a \in \mathbb{R}$.
3. Let $H_{a}(t)$ is the heaviside function which "turns on" at $t=a$. For $a>0$, consider the IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime}+x=e^{t} H_{a}(t)+H_{-3}(t) \\
x(0)=0, x^{\prime}(0)=1 .
\end{array}\right.
$$

(a) (10 points) Determine $X(s)$, the Laplace transform of the solution.

Writing the ODE as

$$
x^{\prime \prime}+x=e^{a} e^{t-a} H_{a}(t)+H_{-3}(t)
$$

Using the table of Laplace transforms one computes that the Laplace transform satisfies

$$
s^{2} X(s)-1+X(s)=\frac{e^{a-a s}}{s-1}+\frac{1}{s}
$$

where we used that $H_{-3}(t)=1$ for $t \geq 0$. Hence,

$$
X(s)=\frac{e^{a-a s}}{(s-1)\left(s^{2}+1\right)}+\frac{1}{s\left(s^{2}+1\right)}+\frac{1}{s^{2}+1}
$$

(b) (10 points) Compute $\mathcal{L}^{-1}\{X(s)\}$. For what values of t does this give a valid solution?

In order to compute the inverse Laplace transform, we use partial fractions to write

$$
\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}
$$

and

$$
\frac{1}{(s-1)\left(s^{2}+1\right)}=\frac{1}{2(s-1)}-\frac{s+1}{2\left(s^{2}+1\right)}
$$

Hence, the inverse Laplace transform is

$$
\mathcal{L}^{-1}\{X(s)\}=\frac{e^{a}}{2} e^{(t-a)} H_{a}(t)-\frac{e^{a}}{2}(\cos (t-a)+\sin (t-a)) H_{a}(t)+1-\cos t+\sin t
$$

This solution can only be guarenteed to be valid for $t \geq 0$, though as written it actually is valid for $t \geq-3$.
4. (20 points) Consider the ODE

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}-27 x=g(t) \\
x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0 .
\end{array}\right.
$$

Determine a forcing $g(t)$ so that the solution $x(t)$ has the property that it grows larger, as $t \rightarrow \infty$, than any solution to the homogenous problem and larger than $g(t)$.

The characteristic polynomial is

$$
P(s)=s^{3}-27=(s-3)\left(s^{2}+3 s+9\right)
$$

This means there are zeros at $s=3$ and at $s=\frac{-3 \pm \sqrt{-27}}{2}=\frac{-3 \pm 3 \sqrt{3} i}{2}$. Hence, the zero with the largest real part is $s=3$.
If $X(s)$ is the Laplace transform of the solution then

$$
P(s) X(s)+s^{2}=G(s)
$$

so

$$
X(s)=\frac{G(s)}{P(s)}-\frac{s^{2}}{P(s)}
$$

In particular, if $G(s)$ is rational and has a pole at $s=3$ and no other pole with real part ≥ 3, then $X(s)$ will have at least a double pole at $s=3$ and no other poles with real part ≥ 3. This means that $x(t)$ will grow more rapidly than $g(t)$ as $t \rightarrow \infty$. Similarly, since any solution to the homogenous problem has Laplace transform which has a simple pole at $s=3, x(t)$ will grow faster than this solution.
A concrete example of such a $g(t)$ is $g(t)=e^{3 t}$.
5. Consider the autonomous non-linear ODE

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{x_{1}+x_{2}}{x_{2}+x_{1} \sin x_{2}} .
$$

(a) (15 points) For any $\alpha \in \mathbb{R}$ consider the initial conditions:

$$
\binom{x_{1}(0)}{x_{2}(0)}=\binom{\alpha}{0} .
$$

Compute the the Picard iterates, \mathbf{U}_{k}, for these solutions and verify that they converge to a global solution to the IVP.

The first iterate is

$$
\mathbf{U}_{0}(t)=\binom{\alpha}{0}
$$

Hence,

$$
\mathbf{U}_{1}(t)=\binom{\alpha}{0}+\int_{0}^{t}\binom{\alpha}{0} d s=\binom{\alpha t}{0}
$$

We claim that

$$
\mathbf{U}_{k}(t)=\binom{\alpha \sum_{j=0}^{k} \frac{t^{j}}{j!}}{0}
$$

Indeed, this is true for \mathbf{U}_{0}, and if it is true for \mathbf{U}_{k}, then

$$
\mathbf{U}_{k+1}(t)=\binom{\alpha}{0}+\int_{0}^{t}\binom{\alpha \sum_{j=0}^{k} \frac{s^{j}}{j!}}{0} d s=\binom{\alpha \sum_{j=0}^{k+1} t^{t^{j}}}{0}
$$

so the claim follows by induction. Clearly, as $k \rightarrow \infty$

$$
\mathbf{U}_{k} \rightarrow\binom{\alpha e^{t}}{0}
$$

which are athe desired solutions.
(b) (5 points) For each α, determine the variational equation along the solutions found in part a)

The ODE is given by $\mathbf{X}^{\prime}=\mathbf{F}(\mathbf{X})$ where

$$
\mathbf{F}\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1}+x_{2}}{x_{2}+x_{1} \sin x 2}
$$

The Jacobian is

$$
D \mathbf{F}=\left(\begin{array}{cc}
1 & 1 \\
\sin x_{2} & 1+x_{1} \cos x_{2}
\end{array}\right) .
$$

Hence, the variational equations along the solutions

$$
\binom{x_{1}(t)}{x_{2}(t)}=\binom{\alpha e^{t}}{0}
$$

found above are

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1+\alpha e^{t}
\end{array}\right) \mathbf{Y}
$$

