Math 306, Fall 2014: Assignment \#10

Due: Wednesday, December 3rd

Instructions: Please ensure that your answers are legible and that sufficient steps are shown. Chapter numbers refer to the course text "Differential Equations, Dynamical Systems, and an Introduction to Chaos."

Problem \#1. Chapter $9, \# 6$
Problem \#2. Chapter 9, \# 7 a) and c)
Problem \#3. Chapter 9, \# 8 a) and c)
Problem \#4. Chapter 9, \# 9
Problem \#5. Chapter 9, \# 15 (Hint: You should use the fact that any degree three polynomial has at least one real root)

Problem \#6. Chapter 9, \#16
Problem \#7. Consider the planar systems

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{e^{x_{2}}}{-2 x_{1}+a x_{2}^{2}}
$$

a) Show that this is a Hamiltonian system only for $a=0$.
b) In this case determine the Hamiltonian.
c) Sketch phase portraits for $a<0, a=0$ and $a>0$.
d) Determine the exact solution to the ODE with $a=0$ and initial condition

$$
\binom{x_{1}(0)}{x_{2}(0)}=\binom{0}{0} .
$$

(Hint: Use the initial conditions to find the level curve of the Hamiltonian, then use the Hamiltonian to turn the system into a one-dimensional ODE).

Problem \#8. Consider the planar system

$$
\binom{x_{1}}{x_{2}}^{\prime}=\binom{\cos x_{1}\left(2 x_{1}-x_{2}\right)}{x_{1}+\frac{2 x_{2}}{1+x_{2}^{2}}}
$$

Restrict attention to the strip $\left|x_{1}\right| \leq \frac{\pi}{2}$
a) Sketch the phase portrait in the strip (Hint: Consider the nullclines).
b) For a point $\mathbf{X}_{0} \neq 0$ in the strip what are $\alpha\left(\mathbf{X}_{0}\right)$ and $\omega\left(\mathbf{X}_{0}\right)$ the α and ω-limit sets.

