Math 306, Fall 2014: Assignment \#5

Due: Wednesday, October 15th

Instructions: Please ensure that your answers are legible and that sufficient steps are shown. Chapter numbers refer to the course text "Differential Equations, Dynamical Systems, and an Introduction to Chaos."

Problem \#1. Chap. $6 \# 1$ parts g) and h). (Do others for practice if you need).
Problem \#2. Chap. $6 \# 3$
Problem \#3. Chap. $6 \# 5$
Problem \#4. Chap. $6 \# 7$
Problem \#5. Chap. $6 \# 12$ parts a), c), d), e) and h)
Problem \#6. Chap. $6 \# 13$
Problem \#7. Let A and B be $n \times n$ matrices.
a) Verify that flow the $\phi_{t}^{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of the linear system

$$
\mathbf{Y}^{\prime}=A \mathbf{Y}
$$

is given by

$$
\phi_{t}^{A}(\mathbf{x})=e^{t A} \cdot \mathbf{x}
$$

b) Using the fact that $A B=B A$ implies $e^{A+B}=e^{A} e^{B}=e^{B} e^{A}$ show that if $A B=B A$, then

$$
\phi_{t}^{A} \circ \phi_{s}^{B}=\phi_{s}^{B} \circ \phi_{t}^{A}
$$

c) Show that

$$
\phi_{t}^{A} \circ \phi_{s}^{A}=\phi_{t+s}^{A}
$$

Use this and the fact (which you may asssume) that for all $t, \mathbf{x} \mapsto \phi_{t}^{A}(\mathbf{x})$ is continuous, to conclude that this map is actually a homeomorphism.

Problem \#8. Let A and B be $n \times n$ matrices.
a) Show that if $A B=B A$ and \mathbf{v} is an eigenvector of A, then either $B \mathbf{v}$ is zero or $B \mathbf{v}$ is an eigenvector of A. Conversely, show that if $A B=B A, B$ is invertible and $B \mathbf{v}$ an eigenvector of A, then \mathbf{v} is an eigenvector of A.
b) Using a) show that if A has distinct real eigenvalues and $A B=B A$, then B has real eigenvalues and the same eigenvectors of A (though possibly different and not distinct eigenvalues).
c) Show that if A and B have non-zero entries only on the diagonal, then $A B=B A$.
d) Conclude that if A has distinct real eigenvalues, then $A B=B A$ if and only if there is a matrix T so that both $T^{-1} A T$ and $T^{-1} B T$ are in canonical form and this form is diagonal.

Bonus Problem. (Do not need to turn this in) Consider a pair of vectors $\mathbf{x}, \mathbf{v} \in \mathbb{R}^{2}$ with have $|\mathbf{v}|=1$. We will think of these as a point \mathbf{y} in \mathbb{R}^{4} (i.e.

$$
\mathbf{y}=(\mathbf{x}, \mathbf{v})=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
v_{1} \\
v_{2}
\end{array}\right)
$$

where

$$
\mathbf{x}=\binom{x_{1}}{x_{2}} \text { and } \mathbf{v}=\binom{v_{1}}{v_{2}}
$$

Let X be the set of all such points. We will interpret X as the configuration space of a car (in an infinite parking lot), namely if $(\mathbf{x}, \mathbf{v}) \in X$, then \mathbf{x} is the position of the front of the car and \mathbf{v} is the direction the car is facing.
a) Let

$$
D=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Show that $e^{t D}(\mathbf{x}, \mathbf{v})=(\mathbf{x}+t \mathbf{v}, \mathbf{v})$ and so conclude $e^{t D} \in X$ if and only if $\mathbf{y} \in X$.
b) Let

$$
T=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

show that $e^{t T}(\mathbf{x}, \mathbf{v})=\left(\mathbf{x}, \mathbf{v}^{\prime}\right)$ where \mathbf{v}^{\prime} is obtained from \mathbf{v} by rotating clockwise by t (counter-clockwise if t is negative) and so conclude $e^{t T} \in X$ if and only if $\mathbf{y} \in X$.
c) Check that $D T \neq T D$ and interpret this in terms of $e^{t T} e^{s D}(\mathbf{x}, \mathbf{v}) \neq e^{s D} e^{t T}(\mathbf{x}, \mathbf{v})$.
d) We model driving a car with zero turn radius as succesive applications of $e^{t T}$ and $e^{t D}$ (D is for drive and T is for turn). That is, one can drive from $\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right)$ to $\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)$ if there are t_{1}, \ldots, t_{k} and s_{1}, \ldots, s_{k} (some possibly zero or negative) so that

$$
\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)=e^{t_{k} T} e^{s_{k} D} \cdots e^{t_{1} T} e^{s_{1} D}\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right) .
$$

Show, that for any two $\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right)$ and $\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)$ there are t_{1}, s_{1}, t_{2} so that

$$
\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)=e^{t_{2} T} e^{s_{1} D} e^{t_{1} T}\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right) .
$$

In other words, its very easy to parallel park with a car with zero turn radius!

Bonus Problem. (Do not need to turn this in)
A better model of a car would be to consider

$$
T_{R}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

and

$$
T_{L}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

and driving from $\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right)$ to $\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)$ to consist of $t_{1}, \ldots, t_{k}, r_{1}, \ldots, r_{k}$ and s_{1}, \ldots, s_{k} so that

$$
\left(\mathbf{x}_{1}, \mathbf{v}_{1}\right)=e^{t_{k} T_{R}} e^{r_{k} T_{L}} e^{s_{k} D} \cdots e^{t_{1} T_{R}} e^{r_{1} T_{L}} e^{s_{1} D}\left(\mathbf{x}_{0}, \mathbf{v}_{0}\right)
$$

a) Compute $e^{t T_{R}}$ and $e^{s T_{L}}$ and argue that they model the actual turning of a car (respectively, to the right and to the left). Verify that the turn radius is 1.
b) Show that for any $t \in[0, \pi / 2)$ there is an r and s_{1}, s_{2} so that

$$
e^{t T_{R}}=e^{s_{2} D} e^{r T_{L}} e^{s_{1} D}
$$

conclude that you can get to as many places driving with a car that can only turn to the left as driving a normal car.
c) Parallel park a car at $\left(0, \mathbf{E}_{1}\right)$ in a spot at $2 \mathbf{E}_{1}$. That is, give a sequence of $t_{1}, \ldots, t_{k}, r_{1}, \ldots, r_{k}$ and s_{1}, \ldots, s_{k} (allowed to be zero or negative) so that

$$
\left(2 \mathbf{E}_{1}, \mathbf{E}_{1}\right)=e^{t_{k} T_{R}} e^{r_{k} T_{L}} e^{s_{k} D} \cdots e^{t_{1} T_{R}} e^{r_{1} T_{R} L} e^{s_{1} D}\left(0, \mathbf{E}_{1}\right) .
$$

(Hint: you should be able to do this in 3 maneuvers - i.e. $k=3$).
d) For any integer $n \geq 1$ parallel park a car at $\left(0, \mathbf{E}_{1}\right)$ in a spot at $2 n \mathbf{E}_{1}$. (Hint: you should be able to do this in $3 n$ maneuvers).
e) Try and parallel park a car at $\left(0, \mathbf{E}_{1}\right)$ in a spot at \mathbf{E}_{1} (this one is a bit trickier - try and do it in 4 maneuvers).
f) Parallel park a car it $\left(0, \mathbf{E}_{1}\right)$ in a spot at $x \mathbf{E}_{1}$ for arbitrary $x \in \mathbb{R}$.

