Math 306, Fall 2014: Assignment #6

Due: Wednesday, October 22nd

Instructions: Please ensure that your answers are legible and that sufficient steps are shown. Chapter numbers refer to the course text "Differential Equations, Dynamical Systems, and an Introduction to Chaos."

Problem #1. Find a particular solution to the following second order ODEs:

a) $x'' + x = e^t$; b) $x'' - x = e^t$.

Problem #2. Solve the IVP

$$\begin{cases} x'' + 4x = t \sin 2t \\ x(0) = 0, x'(0) = 1 \end{cases}$$

Problem #3. Consider mass on a spring whose motion is determined by

$$x'' + 5x' + 4x = 0.$$

- a) Determine the initial conditions x_0, v_0 (i.e., so $x(0) = x_0$ and $x'(0) = v_0$) which allow one to stop the mass completely after time $t = \pi$ by a single blow with a hammer at time $t = \pi$ (i.e., with forcing $a\delta_{\pi}$.) Hint: Reverse time.
- b) What about if you are allowed a second hammer blow at time $t = 2\pi$ and want to completely stop the mass after time $t = 2\pi$ (i.e., the forcing is $a\delta_{\pi} + b\delta_{2\pi}$)?

Problem #4. For a > 0, let $I_a(t) = H_0(t) - H_a(t)$, where $H_{t_0}(t)$ is the heaviside function which "turns on" at $t = t_0$.

a) Determine the $G_a(t)$ so that $I_a(t)$ is the solution to the IVP

$$\begin{cases} y' = G_a(t) \\ y(-1) = 0; \end{cases}$$

b) Determine the $G_a(t)$ so that $I_a(t)$ is the solution to the IVP

$$\begin{cases} y' = -y + G_a(t) \\ y(-1) = 0. \end{cases}$$

(Hint: You may use the fact that if f(t) is a continuous function, then $f(t)\delta_{t_0}(t) = f(t_0)\delta_{t_0}(t)$).

Problem #5. For piecewise continuous $\mathbf{G}(t)$, consider the inhomogeneous linear system

$$\mathbf{Y}' = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \mathbf{Y}' + \mathbf{G}(t).$$

a) Show that every non-zero solution to this equation is periodic with period 2π if $\mathbf{G}(t)$ is periodic with period 2π and

$$\int_0^{2\pi} \mathbf{G}(t) \cos t dt = \int_0^{2\pi} \mathbf{G}(t) \sin t dt = \begin{pmatrix} 0\\0 \end{pmatrix}.$$

b) Show that if $\mathbf{G}(t)$ is periodic with period 2π and

$$\int_{0}^{2\pi} \mathbf{G}(t) \cos t dt = \mathbf{C} \neq \begin{pmatrix} 0\\ 0 \end{pmatrix} \text{ while } \int_{0}^{2\pi} \mathbf{G}(t) \sin t dt = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

then every solution satisfies

$$\mathbf{Y}(t) = \frac{t}{2\pi} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \mathbf{C} + \mathbf{Y}_0$$

where \mathbf{Y}_0 is periodic with period 2π . How rapidly can $|\mathbf{Y}(t)|$ grow as $t \to \infty$ in this situation?

Problem #6. Compute

- a) $\mathcal{L}\{\sin^2 t\};$ b) $\mathcal{L}^{-1}\{\frac{3s+6}{s^2+9}\}.$

Problem #7.

a) Let f satisfy f(t) = 0 for all t < 0. Show that if $\mathcal{L}{f(t)} = F(s)$ is defined for s > a and $\tau > 0$, then

$$\mathcal{L}\{f(t-\tau)\} = e^{-\tau s} F(s).$$

and this is defined for s > a.

- b) What happens without the assumption on f(t) for t < 0?
- c) Suppose that y(t) is s solution to the following "delayed" differential equation:

$$\begin{cases} y'(t) = y(t-1) + e^t \\ y(t) = 0, t \le 0 \end{cases}$$

determine what the Laplace transform, Y(s), of y(t) is. You do not need to find y.

Problem #8. Let f be a non-negative piecewise continuous function and let F(s) be its Laplace transform.

- a) Show that if f is bounded by a constant C, then F(s) is defined on at least $(0, \infty)$ and $F(s) \leq \frac{C}{s}$ b) Show that if there is a $C \geq 0$ so that $Ct^n \leq f(t)$ and F(s) is defined on $(0, \infty)$, then, for such s,

$$\frac{Cn!}{s^{n+1}} \le F(s).$$