Math 306, Fall 2014: Assignment \#6

Due: Wednesday, October 22nd

Instructions: Please ensure that your answers are legible and that sufficient steps are shown. Chapter numbers refer to the course text "Differential Equations, Dynamical Systems, and an Introduction to Chaos."

Problem \#1. Find a particular solution to the following second order ODEs:
a) $x^{\prime \prime}+x=e^{t}$;
b) $x^{\prime \prime}-x=e^{t}$.

Problem \#2. Solve the IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime}+4 x=t \sin 2 t \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

Problem \#3. Consider mass on a spring whose motion is determined by

$$
x^{\prime \prime}+5 x^{\prime}+4 x=0
$$

a) Determine the initial conditions x_{0}, v_{0} (i.e., so $x(0)=x_{0}$ and $x^{\prime}(0)=v_{0}$) which allow one to stop the mass completely after time $t=\pi$ by a single blow with a hammer at time $t=\pi$ (i.e., with forcing $a \delta_{\pi}$.) Hint: Reverse time.
b) What about if you are allowed a second hammer blow at time $t=2 \pi$ and want to completely stop the mass after time $t=2 \pi$ (i.e., the forcing is $a \delta_{\pi}+b \delta_{2 \pi}$)?

Problem \#4. For $a>0$, let $I_{a}(t)=H_{0}(t)-H_{a}(t)$, where $H_{t_{0}}(t)$ is the heaviside function which "turns on" at $t=t_{0}$.
a) Determine the $G_{a}(t)$ so that $I_{a}(t)$ is the solution to the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=G_{a}(t) \\
y(-1)=0
\end{array}\right.
$$

b) Determine the $G_{a}(t)$ so that $I_{a}(t)$ is the solution to the IVP

$$
\left\{\begin{array}{c}
y^{\prime}=-y+G_{a}(t) \\
y(-1)=0
\end{array}\right.
$$

(Hint: You may use the fact that if $f(t)$ is a continuous function, then $f(t) \delta_{t_{0}}(t)=f\left(t_{0}\right) \delta_{t_{0}}(t)$).

Problem \#5. For piecewise continuous $\mathbf{G}(t)$, consider the inhomogneous linear system

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{Y}^{\prime}+\mathbf{G}(t)
$$

a) Show that every non-zero solution to this equation is periodic with period 2π if $\mathbf{G}(t)$ is periodic with period 2π and

$$
\int_{0}^{2 \pi} \mathbf{G}(t) \cos t d t=\int_{0}^{2 \pi} \mathbf{G}(t) \sin t d t=\binom{0}{0}
$$

b) Show that if $\mathbf{G}(t)$ is periodic with period 2π and

$$
\int_{0}^{2 \pi} \mathbf{G}(t) \cos t d t=\mathbf{C} \neq\binom{ 0}{0} \text { while } \int_{0}^{2 \pi} \mathbf{G}(t) \sin t d t=\binom{0}{0}
$$

then every solution satisfies

$$
\mathbf{Y}(t)=\frac{t}{2 \pi}\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \mathbf{C}+\mathbf{Y}_{0}
$$

where \mathbf{Y}_{0} is periodic with period 2π. How rapidly can $|\mathbf{Y}(t)|$ grow as $t \rightarrow \infty$ in this situation?

Problem \#6. Compute
a) $\mathcal{L}\left\{\sin ^{2} t\right\}$;
b) $\mathcal{L}^{-1}\left\{\frac{3 s+6}{s^{2}+9}\right\}$.

Problem \#7.

a) Let f satisfy $f(t)=0$ for all $t<0$. Show that if $\mathcal{L}\{f(t)\}=F(s)$ is defined for $s>a$ and $\tau>0$, then

$$
\mathcal{L}\{f(t-\tau)\}=e^{-\tau s} F(s)
$$

and this is defined for $s>a$.
b) What happens without the assumption on $f(t)$ for $t<0$?
c) Suppose that $y(t)$ is s solution to the following "delayed" differential equation:

$$
\left\{\begin{array}{c}
y^{\prime}(t)=y(t-1)+e^{t} \\
y(t)=0, t \leq 0
\end{array}\right.
$$

determine what the Laplace transform, $Y(s)$, of $y(t)$ is. You do not need to find y.

Problem \#8. Let f be a non-negative piecewise continuous function and let $F(s)$ be its Laplace transform.
a) Show that if f is bounded by a constant C, then $F(s)$ is defined on at least $(0, \infty)$ and $F(s) \leq \frac{C}{s}$
b) Show that if there is a $C \geq 0$ so that $C t^{n} \leq f(t)$ and $F(s)$ is defined on $(0, \infty)$, then, for such s,

$$
\frac{C n!}{s^{n+1}} \leq F(s)
$$

