Math 306, Fall 2014: Assignment \#7

Due: Wednesday, October 29th

Instructions: Please ensure that your answers are legible and that sufficient steps are shown. Chapter numbers refer to the course text "Differential Equations, Dynamical Systems, and an Introduction to Chaos."

Problem \#1. Suppose that $f(t)$ is piecewise continuous and and periodic with period T (i.e. so $f(t+T)=$ $f(t)$ for all $t \in \mathbb{R})$. Show that

$$
\mathcal{L}\{f(t)\}=\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t
$$

Problem \#2. Use the Laplace transform to solve the following IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}+x=g(t) \\
x(0)=0, x^{\prime}(0)=1, x^{\prime \prime}(0)=0
\end{array}\right.
$$

where

$$
g(t)=\left\{\begin{array}{cc}
0 & t<\pi \\
\sin t & \pi<t<3 \pi / 2 \\
-1 & t>3 \pi / 2
\end{array}\right.
$$

Problem \#3. Recall the characteristic polynomial of the ODE

$$
x^{(n)}+a_{n-1} x^{(n-1)}+\ldots+a_{1} x^{\prime}+a_{0}=g(t)
$$

is defined to be

$$
P(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots a_{1} \lambda+a_{0}
$$

Show that this is the same as the characteristic polynomial of the $n \times n$ matrix of the corresponding first order linear system.

Problem \#4. Determine the asymptotic behavior of the following IVP as $t \rightarrow \infty$

$$
\left\{\begin{array}{c}
x^{\prime \prime}-x=t \sin 2 t+2 \\
x(0)=0, x^{\prime}(0)=1
\end{array}\right.
$$

Problem \#5. Determine the asymptotic behavior of the following IVP as $t \rightarrow \infty$

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}+x^{\prime}=e^{-3 t}+2 e^{-t}+t^{2} \\
x(0)=0, x^{\prime}(0)=0, x^{\prime \prime}(0)=0
\end{array}\right.
$$

Problem \#6. Consider the IVP

$$
\left\{\begin{array}{c}
x^{\prime \prime \prime}-8 x=g(t) \\
x(0)=1, x^{\prime}(0)=0, x^{\prime \prime}(0)=0
\end{array}\right.
$$

Determine a forcing $g(t)$ so that the resulting solution grows larger, as $t \rightarrow \infty$, than either $g(t)$ itself, or any solution to the homogenous problem.

Problem \#7. Suppose that f, g and h are piecewise continuous functions with $|f(t)|,|g(t)|,|h(t)| \leq C e^{\alpha t}$ for some $\alpha \in \mathbb{R}$. Define the convolution of f and g to be the functions

$$
(f \star g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

a) Show that $f \star g=g \star f$;
b) Show that $(f \star g) \star h=f \star(g \star h)$;
c) Show that

$$
\mathcal{L}\{f \star g\}=\mathcal{L}\{f\} \cdot \mathcal{L}\{g\} .
$$

i.e., the Laplace transform of a convolution of f and g is the product of the Laplace transform of f and of g separately.
d) Use this to compute

$$
\mathcal{L}^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right\}
$$

Problem \#8. Use the Laplace transform to prove the variation of parameters formula for a solution to the ODE $y^{\prime}=a y+g(t)$. (Hint: Use the previous exercise).

