
Homework 2 Sample Solutions

Problem 2.3. In Figure 2.2 (not pictured here), you see four direction fields. Match each
of these direction fields with one of the systems in the previous exercise.

Solution. Many of you just matched the pictures with the systems, with no explanation.
That will not earn you full credit in this class. One needs to explain what one is thinking
when answering a homework question.

To answer this question, one simply needs to identify the eigenvalues and associated
eigenvectors of each system (which you all did in problem 2) and then identify which direction
field represents these eigenvectors and eigenvalues.

In my opinion, this obvious direction field to start with is 2. It has a line with no
arrows on it, which clearly represents eigenvectors with eigenvalue 0. The only system we
are considering which had an eigenvalue of 0 is (b), so 2 matches (b).

The next obvious direction field to consider is 4. It’s plain that all eigenvalues associated
with this direction field are positive. The only such system from problem 2 is (a). Moreover,
the eigenvectors of (a) were (1, 0) and (1, 1), both of which are clealy eigenvectors in this
direction field.

Looking at the remaining direction fields, 1 has an obvious negative eigenvalue with
eigenvector (1,−1). This matches (c). Likewise 3 has a positive eigenvalue with associated
eigenvector (2, 1) or so. System (d) has a positive eigenvalue with eigenvector (2,

√
10−2) ≈

(2, 1), so this matches.

Problem 2.8. Describe all possible 2× 2 matrices with eigenvalues of 0 and 1.

Solution. A number of you either weren’t sure how to attack this problem or weren’t careful
with the details as you found your solution. I’ll just dive in to my solution.

We start with a matrix A =

(
a b
c d

)
. Since one of the eigenvalues is 0, we know that

the determinant of A is zero, i.e. ad − bc = 0. We also know that since 1 is an eigenvalue,
det(A− I) = 0 too. Writing this out, we find

(a− 1)(d− 1)− bc = ad− a− d+ 1− bc = 0

We can substitute ad− bc = 0 to obtain

−a− d+ 1 = 0 =⇒ d = 1− a

Using this, we now have

(a− 1)(d− 1)− bc = (a− 1)(−a)− bc = 0 =⇒ bc = a− a2
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At this point some of you were tempted to write

c =
a− a2

b

but this is only true if b 6= 0!! Hence, we need to split this problem into two cases: Either
b 6= 0 or b = 0. In the former case, we are done. We have shown that such matrices are of
the form {(

a b
a−a2

b
1− a

)
: a ∈ R, b ∈ R \ {0}

}
and it is easy to check that all matrices of this form do indeed have eigenvalues 0, 1.

It remains to determine what happens if b = 0. In this case, we get

(0)c = 0 = a− a2 =⇒ a = 0 or 1

Hence the remaining matrices are of the form{(
a 0
c 1− a

)
: a = 0 or 1, c ∈ R

}
Again, it’s easy to check that all matrices of this form do have eigenvalues 0, 1. This completes
the problem.

Problem 2.11. Prove that two vectors V = (v1, v2) and W = (w1, w2) are linearly inde-
pendent if and only if

det

(
v1 w1

v2 w2

)
6= 0.

Solution. This was another problem that students tended to stumble over by dividing by
unknown constants, hence assuming that they are nonzero, etc. Whenever we divide by
something, we are implicitly assuming that it is nonzero. Hence, we must separately address
the case in which it is zero. You’ll see me do just that in what follows:

Here I prove the contrapositive of the statement. That is, I prove that the vectors are
linearly dependent iff the determinant is zero. So, to begin, suppose that V,W are linearly
dependent. This means that there exist numbers c1, c2 ∈ R such that c1V + c2W = 0, but
at least one of c1, c2 is nonzero (but one of them could be zero!). Suppose that c1 6= 0. Then
we have V = − c2

c1
W , and so

det

(
v1 w1

v2 w2

)
= det

(
−c2w1/c1 w1

−c2w2/c1 w2

)
= −c2w1w2

c1
+
w1c2w2

c1
= 0

If, on the other hand, c1 = 0, then by assumption c2 6= 0 (since both cannot be zero), and a
similar calculation shows the determinant is zero.

Conversely, suppose that

det

(
v1 w1

v2 w2

)
v1w2 − v2w1 = 0
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Then v1w2 = v2w1. Thus, we have that

w2

(
v1
v2

)
=

(
v1w2

v2w2

)
=

(
v2w1

v2w2

)
= v2

(
w1

w2

)
Thus, we’ve shown that

w2V − v2W = 0

If v2 or w2 is nonzero, then by definition V,W are linearly dependent. Otherwise we have
v2 = w2 = 0, and by a similar process to the above, we can show

w1V − v1W = 0

Thus, again, we’re done if either v1 or w1 is nonzero. If this is not the case, then we have
that v1 = v2 = w1 = w2 = 0, which implies that both V and W are the zero vector, hence
we trivially have V +W = 0, implying that they are linearly dependent. This completes the
proof.

As you can see, a competely rigorous and correct proof of this fact is more involved than
you might have thought at first! Be sure to pay attention to the small details in your future
assignments.

Problem 2.14. Prove that the eigenvectors of a 2×2 matrix corresponding to distinct real
eigenvalues are always linearly independent.

Solution. This is another problem in which students had trouble finding the right attack
strategy. The correct solution is actually quite simple.

Let v1, v2 be nonzero eigenvectors corresponding to the distinct real eigenvalues λ1, λ2 of
the matrix A. Suppose that c1v1 + c2v2 = 0. Applying A to this equation, we get

c1Av1 + c2Av2 = c1λ1v1 + c2λ2v2 = 0

On the other hand, multiplying by λ1 yields

λ1(c1v1 + c2v2) = c1λ1v1 + c2λ1v2 = 0

Subtracting these equations yields

c2(λ2 − λ1)v2 = 0

But since v2 6= 0 and the eigenvalues are distinct (i.e. λ2− λ1 6= 0), this implies that c2 = 0.
We similarly obtain c1 = 0. Thus, by definition, v1, v2 are linearly independent.

(If you’re not sure why this says that v1, v2 are linearly independent, you should look up
the definition in a linear algebra book.)
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