
Homework 4 Sample Solutions

Problem 4.6. Prove that any two linear systems with the same eigenvalues ±iβ ,β 6= 0 are
conjugate. What happens if the systems have eigenvalues ±iβ and ±iγ with β 6= γ? What
if γ = −β?

Solution. People actually generally got this one right, but I thought I’d do it anyway because
it illustrates both how to find conjugates and how to prove conjugates do not exist.

I’ll denote the systems as X ′ = AX and Y ′ = BY throughout this solution. Firstly, if
the two systems both have eigenvalues ±iβ with β 6= 0, then by the work in the book, there
exist invertible matrices T and S such that

T−1AT = S−1BS =

(
0 −β
β 0

)
= C

which corresponds to a new system, Z ′ = CZ. Then the map T−1 sends solutions of
X ′ = AX to solutions of Z ′ = CZ, and the map S sends solutions of Z ′ = CZ to solutions
of Y ′ = BY . I therefore claim that the composition S ◦ T−1 is the desired conjugacy. Since
it sends solutions of the first system to solutions of the second, it suffices to show that
S ◦ T−1 is a homeomorphism of R2. But since it’s clearly an invertible linear map, it’s a
homeomorphism by what we talked about in section. This completes the proof.

(By the way, if you didn’t explain that S ◦ T−1 is a homeomorphism on your homework,
that’s OK. I just wanted to give all the details here.)

Now if A has eigenvalues ±iβ and B has eigenvalues ±iγ, and γ = ±β, then we are in
the above situation, hence the systems are conjugate.

It remains to see what happens if |β| 6= |γ|. (I assume here that γ 6= 0 too.) Suppose
without loss of generality that |β| > |γ|. Then we have previously found that solutions of the
first system look like linear combinations of sin βt and cos βt, while solutions of the second
look like linear combinations of sin γt and cos γt. For this reason, nonconstant solutions of
the first system have period 2π

|β| while nonconstant solutions of the second have period 2π
|γ| .

Now suppose that h(x, y) is a conjugacy from the first system to the second. By definition,
this means that φB(t, h(X0)) = h(φA(t,X0)) for all X0 ∈ R2. But notice that we always have

φA(t,X0) = φA(t+
2π

|β|
, X0)

for all t and any X0. Since h is a function (let alone a homeomorphism), this would force

φB(t, h(X0)) = φB(t+
2π

|β|
, h(X0))
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But this is impossible since solutions of the second system have a period of 2π
|γ| , which is

longer than 2π
|β| ! Hence no such conjugacy can exist.

This proves that if |β| 6= |γ|, then the systems are not conjugate.

Problem 5.5. Put the following matrices in canonical form: (listed below).

Solution.

(a) A =

 0 0 1
0 1 0
1 0 0


When a problem asks you to put some matrix A in another form, what they mean is for

you to find an invertible T such that T−1AT is of the desired form. If you do not write down
what this T is, you have not completed the problem.

To start, we find eigenvalues and eigenspaces. For this matrix, we get eigenvalues ±1 and

eigenspaces E1 = span


 1

0
1

 ,

 0
1
0

 and E−1 = span

 1
0
−1

 (your bases may look

different). Since we can find a basis for R3 consisting of eigenvectors, A can be diagonalized.

Choosing T =

 1 0 1
0 1 0
1 0 −1

, we get T−1AT =

 1 0 0
0 1 0
0 0 −1

.

(b) A =

 1 0 1
0 1 0
0 0 1


This time the only eigenvalue is 1, with eigenspace E1 = span


 1

0
0

 ,

 0
1
0

. This

time we cannot find a basis of eigenvectors of the matrix. Rather, we solve

(A− I)X =

 1
0
0


(Similarly, we could have chosen any eigenvector for the right hand side.) This is a straight-

forward process, which yields infinitely many solutions. One solution is

 0
0
1

. This, with

two vectors from E1, completes the basis of R3, yielding the matrix T =

 1 0 0
0 0 1
0 1 0

 (notice

the order of the basis we’ve used here). Thus, we have T−1AT =

 1 1 0
0 1 0
0 0 1

.

(c) A =

 0 1 0
−1 0 0
1 1 1


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This time we get eigenvalues 1,±i with eigenspaces E1 = span

 0
0
1

 and Ei = span

 i
−1
1


(there’s no need to write down E−i). Using real and imaginary parts of the eigenvector for

i, we get a basis for R3 which yields the matrix T =

 0 0 1
0 −1 0
1 1 0

. Thus, we obtain

T−1AT =

 1 0 0
0 0 1
0 −1 0

.

Problem 5.11. Show that if A and/or B are noninvertible matrices, then AB is also non-
invertible.

Solution. This is the question which the most people got wrong. A typical incorrect answer
goes as follows: We know A is noninvertible iff detA = 0, and we also know
det(AB) = (detA)(detB). Thus if detA = 0 or detB = 0, then AB is not invertible.

But this is circular reasoning! Why? Because we haven’t proved that
det(AB) = (detA)(detB) yet! In fact, if you check on page 81 of the text where the authors
prove this fact, they delay the case of A or B being noninvertible to this very exercise! They
only give the proof for the case in which both matrices are invertible. This exercise completes
the proof, so obviously we cannot use that fact to prove itself!

Rather, we must take a more hands-on approach. It follows from the rank-nullity theorem
that a square matrix A is invertible iff it is one-to-one iff it is onto (when viewed as a linear
map Rn → Rn). Thus, if we assume that A is not invertible, it follows that A is not onto. But
then AB cannot be onto either (you should check this yourself). Thus AB is not invertible.

Similarly, if we assume that B is not invertible, then it follows that B is not one-to-one
(again by the rank-nullity theorem). But then AB cannot be one-to-one either (again, check
this yourself), whence it is not invertible. This completes the proof.

You could also use the property that an invertible matrix A has a unique solution to the
equation AX = Y for every Y ∈ Rn. The proof would look similar in structure to the one
given here.
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