
Homework 5 Sample Solutions

Problem 6.12. Compute the exponentials of the following matrices. (Listed below)

Solution. I’m not going to do all of these, but I’ll pick a representative sample.

(a) A =

(
5 −6
3 −4

)
With matrices like this one, it’s easiest to first make a change of basis to put it in canonical

form. The exponentials of 2 × 2 matrices in canonical form is all done in the book, so this
will make our life easy.

The usual computation reveals that this matrix has eigenvalues 2,−1 with eigenspaces

E2 = span

(
2
1

)
and E−1 = span

(
1
1

)
. Choosing T =

(
2 1
1 1

)
, we have that

B = T−1AT =

(
2 0
0 −1

)
. As computed in the book, we have that eB =

(
e2 0
0 e−1

)
.

Moreover, by the proposition on page 126, eA = TeBT−1 =

(
2e2 − e−1 2e−1 − 2e2

e2 − e−1 2e−1 − e2
)

.

(e) A =

 0 1 2
0 0 3
0 0 0


This is actually quite an easy matrix to exponentiate since it is what we call a nilpotent

matrix. Nilpotent just means that some power of this matrix is 0, thus the infinite sum

defining the exponential becomes finite! We compute: A2 =

 0 0 3
0 0 0
0 0 0

 , A3 = 0. Thus,

by definition, eA = I + A + A2/2 + 0 + 0 + . . . =

 1 1 7/2
0 1 3
0 0 1

. Take advantage of this

trick whenever you can!

(h) A =

(
i 0
0 −i

)
Since this matrix does not have real coefficients, we cannot use our usual tricks to put

it in canonical form (so trying to take real and imaginary components of eigenvectors to get
T will not work). However, notice that it is already in its canonical form! It is diagonalized
after all, and diagonal matrices are as nice as they come. In fact, exponentiating this matrix
works exactly the same as exponentiating a diagonal matrix with real components. The
proof of the formula is exactly the same as the proof given in the book.
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Thus, we have that eA =

(
ei 0
0 e−i

)
=

(
cos 1 + i sin 1 0

0 cos 1− i sin 1

)
.

Problem 6.13. Find an example of two matrices A,B such that

eA+B 6= eAeB

Solution. Recall that if AB = BA, then exp(A + B) = exp(A) exp(B) = exp(B) exp(A).
Thus if we want to find an example of the above, we had better make sure that A and B
don’t commute!

Here’s an example: A =

(
1 1
0 1

)
, B =

(
1 0
1 1

)
. You can check for yourself that

AB 6= BA. So let’s try and see if this satisfies the required property.
Via the same method as Problem 6.12, I calculate

eA =

(
e e
0 e

)
, eB =

(
e 0
e e

)
, eA+B =

1

2

(
e+ e3 e3 − e
e3 − e e+ e3

)

On the other hand, eAeB =

(
2e2 e2

e2 e2

)
. Thus these matrices have the desired property.

Honestly, these were the first two matrices I could think of which did not commute. It
turned out that they satisfied the problem as well, but I didn’t know that in advance.

Problem 8. (Corrected statement)
Let A,B be n× n matrices.
a) Show that if AB = BA and v is an eigenvector of A, then either Bv is zero or Bv

is an eigenvector of A. Conversely, show that if AB = BA, B is invertible and Bv is an
eigenvector of A, then v is an eigenvector of A.

b) Using a) show that if A has distinct real eigenvalues and AB = BA, then B has real
eigenvalues and the same eigenvectors of A.

c) Show that if A and B have non-zero entries only on the diagonal, then AB = BA.
d) Conclude that if A has distinct real eigenvalues, then AB = BA if and only if there is

a matrix T so that both T−1AT and T−1BT are in canonical form, and this form is diagonal.

Solution.
a) First, assume that Av = λv for some λ (i.e. v is an eigenvector of A). Then applying

B to both sides, we obtain BAv = B(λv) =⇒ ABv = λBv, which is to say that Bv is an
eigenvector of A.

Conversely, suppose that B is invertible and Bv is an eigenvector of A, i.e. ABv = λBv
for some λ. Then BAv = ABv = B(λv). Applying B−1 to both sides, we obtain B−1BAv =
Av = B−1Bλv = λv, i.e. v is an eigenvector of A.

b) Since A has distinct real eigenvalues, each of its eigenspaces is one dimensional. More-
over, whenever v is a (nonzero) eigenvector of A, part a) implies that Bv is a (nonzero)
eigenvector of A as well, with the same eigenvalue. Thus Bv and v live in the same one
dimensional vector space, i.e. Bv = λ′v for some real λ′. Thus B has the same eigenvec-
tors as A, and all of its eigenvalues are real. (Be careful on this point: A has n distinct
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eigenvalues, and each gave rise to a different eigenvector of B. But B can have at most n
linearly independent eigenvectors, so the eigenvalues obtained in this way must be all of B’s
eigenvalues. We therefore saw that they were all real.)

c) This is very easy to see. Just write down two generic diagonal matrices and you will
see that they must commute.

d) First suppose that AB = BA. Then by part b) A and B have the same eigenvectors.
Moreover since A has distinct real eigenvalues, it has n linearly independent eigenvectors.
Call them v1,v2, . . . ,vn. Let T be the matrix whose ith column is vi for all i (that is,
TEi = vi). Since the vi are also the eigenvectors of B, it follows that T−1AT and T−1BT
are both diagonal matrices (with their eigenvalues on the diagonal). In this situation, we
say that A and B are simutaneously diagonalized, by the way.

Conversely, suppose that there is a T such that T−1AT and T−1BT are diagonal. Then
we easily have the following:

T−1ABT = (T−1AT )(T−1BT ) = (T−1BT )(T−1AT ) = T−1BAT

All I have used here is that I can add a TT−1 = I wherever I want, and that diagonal
matrices commute (see c) above). Multiplying each side on the left by T and on the right
by T−1 yields AB = BA as claimed.
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