Homework 6 Sample Solutions

Problem \#1. Find a particular solution of the following second order ODEs:
a) $x^{\prime \prime}+x=e^{t}$
b) $x^{\prime \prime}-x=e^{t}$

Solution. Several people used a complicated variation of parameters method to solve these, so I thought I'd illustrate how much easier it is to use undetermined coefficients instead.
a) Note that in this case our characteristic polynomial (obtained from setting $x=e^{r t}$ and plugging in to the homogeneous equation) is $r^{2}+1=0$. Thus the system has eigenvalues $\pm i$. Since 1 is not an eigenvalue, we simply try the solution $A e^{t}$ (since the RHS is just e^{t}). Plugging this in, we obtain $A e^{t}+A e^{t}=e^{t}$. Thus $A=1 / 2$, and we have the particular solution $\frac{1}{2} e^{t}$ (See how easy that was? No integrals required!).
b) Now our characteristic polynomial has become $r^{2}-1=0$, so we have eigenvalues ± 1. Since 1 is an eigenvalue with multiplicity 1 , we modify our guess. That is, try Ate ${ }^{t}$. Plugging in yields $2 A e^{t}+A t e^{t}-A t e^{t}=e^{t}$. So once again $A=1 / 2$ works, and we have the particular solution $\frac{1}{2} t e^{t}$.

Problem $\# 3$. Consider a mass on a spring whose motion is determined by

$$
x^{\prime \prime}+5 x^{\prime}+4 x=0 .
$$

a) Determine the initial conditions x_{0}, v_{0} which allow one to stop the mass completely after time $t=\pi$ by a single blow with a hammer at time $t=\pi$ (i.e., with forcing $a \delta_{\pi}$.)
b) What about if you are allowed a second hammer blow at time $t=2 \pi$ and want to completely stop the mass after time $t=2 \pi$ (i.e., the forcing is $a \delta_{\pi}+b \delta_{2 \pi}$)?

Solution.

a) A lot of people made mistakes on this one, by either making the wrong change of variables or getting an incorrect differential equation from their change of variables. Here's what I did:

The condition that the mass stops completely after time $t=\pi$ is equivalent to setting the initial condition $x(\pi+1)=x^{\prime}(\pi+1)=0$ (or at any time after $t=\pi$). I don't want to think too hard about what will actually happen at $t=\pi$, so I'll use this instead.

Now, let's make a change of variables to make our lives easier. I set $y(t)=x(\pi+1-t)$. That way $y(0)=y^{\prime}(0)=0$. Also, $y^{\prime}(t)=-x^{\prime}(\pi+1-t)$, but $y^{\prime \prime}(t)=x^{\prime \prime}(\pi+1-t)$. Thus, y satisfies the differential equation

$$
y^{\prime \prime}-5 y^{\prime}+y=a \delta_{\pi}(\pi+1-t)=a \delta_{0}(1-t)=a \delta_{0}(t-1)=a \delta_{1}(t)
$$

Laplacing everything, we end up with the expression

$$
Y(s)=\mathcal{L}\{Y\}=\frac{a e^{-s}}{s^{2}-5 s+4}=\frac{a e^{-s}}{3}\left(\frac{1}{s-4}-\frac{1}{s-1}\right)
$$

using partial fractions. Inverse Laplacing yields $y(t)=\frac{a}{3} H_{1}(t)\left(e^{4(t-1)}-e^{t-1}\right)$. Thus $x(t)=\frac{a}{3}\left(1-H_{\pi}(t)\right)\left(e^{4(\pi-t)}-e^{\pi-t}\right)$. Differentiating at every $t \neq \pi$, we have $x^{\prime}(t)=\frac{a}{3}\left(1-H_{\pi}(t)\right)\left(e^{\pi-t}-4 e^{4(\pi-t)}\right)$. Thus $x(0)=x_{0}=\frac{a}{3}\left(e^{4 \pi}-e^{\pi}\right)$ and $x^{\prime}(0)=v_{0}=\frac{a}{3}\left(e^{\pi}-4 e^{4 \pi}\right)$.
b) We take the same strategy, but instead use the initial condition $x(2 \pi+1)=x^{\prime}(2 \pi+1)=$ 0 and the change of variables $y(t)=x(2 \pi+1-t)$. Then our IVP is $y(0)=y^{\prime}(0)=0$ and

$$
y^{\prime}-5 y^{\prime}+4 y=a \delta_{\pi+1}+b \delta_{1}
$$

The same process yields

$$
x(t)=\frac{1}{3}\left(a\left(1-H_{\pi}(t)\right)\left(e^{4(\pi-t)}-e^{\pi-t}\right)+b\left(1-H_{2 \pi}(t)\right)\left(e^{4(2 \pi-t)}-e^{2 \pi-t}\right)\right)
$$

Thus we have $x(0)=x_{0}=\frac{a}{3}\left(e^{4 \pi}-e^{\pi}\right)+\frac{b}{3}\left(e^{8 \pi}-e^{2 \pi}\right)$ and $x^{\prime}(0)=v_{0}=\frac{a}{3}\left(e^{\pi}-4 e^{4 \pi}\right)+\frac{b}{3}\left(e^{2 \pi}-4 e^{8 \pi}\right)$.

Problem \#8. Let f be a non-negative piecewise continuous function and let $F(s)$ be its Laplace transform.
a) Show that if f is bounded by a constant C, then $F(s)$ is defined on at least $(0, \infty)$ and $F(s) \leq \frac{C}{s}$.
b) Show that if there is a $C \geq 0$ so that $C t^{n} \leq f(t)$ and $F(s)$ is defined on $(0, \infty)$, then, for such s,

$$
\frac{C n!}{s^{n+1}} \leq F(s)
$$

Solution.

a) I was kind of surprised to see so many people not even use the fact that f is nonnegative in their solutions to this problem. It is absolutely essential to use this; otherwise the statement is not true! I'll show you what I mean.

By definition, $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$. On the one hand, $f \leq C$ implies that $\int_{0}^{\infty} e^{-s t} f(t) d t \leq \int_{0}^{\infty} e^{-s t} C d t=\mathcal{L}\{C\}=\frac{C}{s}$ for any $s>0$. On the other hand, $f \geq 0$ implies that $0=\int_{0}^{\infty} 0 d t \leq \int_{0}^{\infty} e^{-s t} f(t) d t$. Thus, we have that $0 \leq F(s) \leq \frac{C}{s}$ for every $s>0$. It is only because we have both inequalities that we can conclude that $F(s)$ converges for all $s>0$.
b) This just comes down to doing integration by parts a whole bunch. We have that

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \geq \int_{0}^{\infty} C e^{-s t} t^{n} d t=-\left.\frac{C t^{n} e^{-s t}}{s}\right|_{0} ^{\infty}+\frac{n}{s} \int_{0}^{\infty} C t^{n-1} e^{-s t} d t
$$

The left term is 0 since we are assuming $s>0$ and we proceed with the same method with the right term. Eventually we get

$$
F(s) \geq \frac{n!}{s^{n}} \int_{0}^{\infty} C e^{-s t} d t=\frac{C n!}{s^{n+1}}
$$

which is exactly what we wanted.

