
Homework 6 Sample Solutions

Problem #1. Find a particular solution of the following second order ODEs:
a) x′′ + x = et

b) x′′ − x = et

Solution. Several people used a complicated variation of parameters method to solve these,
so I thought I’d illustrate how much easier it is to use undetermined coefficients instead.

a) Note that in this case our characteristic polynomial (obtained from setting x = ert and
plugging in to the homogeneous equation) is r2 + 1 = 0. Thus the system has eigenvalues
±i. Since 1 is not an eigenvalue, we simply try the solution Aet (since the RHS is just et).
Plugging this in, we obtain Aet + Aet = et. Thus A = 1/2, and we have the particular
solution 1

2
et (See how easy that was? No integrals required!).

b) Now our characteristic polynomial has become r2− 1 = 0, so we have eigenvalues ±1.
Since 1 is an eigenvalue with multiplicity 1, we modify our guess. That is, try Atet. Plugging
in yields 2Aet +Atet −Atet = et. So once again A = 1/2 works, and we have the particular
solution 1

2
tet.

Problem #3. Consider a mass on a spring whose motion is determined by

x′′ + 5x′ + 4x = 0.

a) Determine the initial conditions x0, v0 which allow one to stop the mass completely
after time t = π by a single blow with a hammer at time t = π (i.e., with forcing aδπ.)

b) What about if you are allowed a second hammer blow at time t = 2π and want to
completely stop the mass after time t = 2π (i.e., the forcing is aδπ + bδ2π)?

Solution.
a) A lot of people made mistakes on this one, by either making the wrong change of

variables or getting an incorrect differential equation from their change of variables. Here’s
what I did:

The condition that the mass stops completely after time t = π is equivalent to setting
the initial condition x(π + 1) = x′(π + 1) = 0 (or at any time after t = π). I don’t want to
think too hard about what will actually happen at t = π, so I’ll use this instead.

Now, let’s make a change of variables to make our lives easier. I set y(t) = x(π + 1− t).
That way y(0) = y′(0) = 0. Also, y′(t) = −x′(π + 1− t), but y′′(t) = x′′(π + 1− t). Thus, y
satisfies the differential equation

y′′ − 5y′ + y = aδπ(π + 1− t) = aδ0(1− t) = aδ0(t− 1) = aδ1(t)
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Laplacing everything, we end up with the expression

Y (s) = L{Y } =
ae−s

s2 − 5s+ 4
=
ae−s

3

(
1

s− 4
− 1

s− 1

)
using partial fractions. Inverse Laplacing yields y(t) = a

3
H1(t)

(
e4(t−1) − et−1

)
. Thus

x(t) = a
3
(1−Hπ(t))(e4(π−t) − eπ−t). Differentiating at every t 6= π, we have

x′(t) = a
3
(1−Hπ(t))(eπ−t − 4e4(π−t)). Thus x(0) = x0 = a

3
(e4π − eπ) and

x′(0) = v0 = a
3
(eπ − 4e4π).

b) We take the same strategy, but instead use the initial condition x(2π+1) = x′(2π+1) =
0 and the change of variables y(t) = x(2π + 1− t). Then our IVP is y(0) = y′(0) = 0 and

y′ − 5y′ + 4y = aδπ+1 + bδ1

The same process yields

x(t) =
1

3

(
a (1−Hπ(t))

(
e4(π−t) − eπ−t

)
+ b (1−H2π(t))

(
e4(2π−t) − e2π−t

))
Thus we have x(0) = x0 = a

3
(e4π − eπ) + b

3
(e8π − e2π) and

x′(0) = v0 = a
3
(eπ − 4e4π) + b

3
(e2π − 4e8π).

Problem #8. Let f be a non-negative piecewise continuous function and let F (s) be its
Laplace transform.

a) Show that if f is bounded by a constant C, then F (s) is defined on at least (0,∞)
and F (s) ≤ C

s
.

b) Show that if there is a C ≥ 0 so that Ctn ≤ f(t) and F (s) is defined on (0,∞), then,
for such s,

Cn!

sn+1
≤ F (s)

Solution.
a) I was kind of surprised to see so many people not even use the fact that f is non-

negative in their solutions to this problem. It is absolutely essential to use this; otherwise
the statement is not true! I’ll show you what I mean.

By definition, F (s) =
∫∞
0
e−stf(t)dt. On the one hand, f ≤ C implies that∫∞

0
e−stf(t)dt ≤

∫∞
0
e−stCdt = L{C} = C

s
for any s > 0. On the other hand, f ≥ 0 implies

that 0 =
∫∞
0

0dt ≤
∫∞
0
e−stf(t)dt. Thus, we have that 0 ≤ F (s) ≤ C

s
for every s > 0. It

is only because we have both inequalities that we can conclude that F (s) converges for all
s > 0.

b) This just comes down to doing integration by parts a whole bunch. We have that

F (s) =

∫ ∞
0

e−stf(t)dt ≥
∫ ∞
0

Ce−sttndt = −Ct
ne−st

s

∣∣∣∣∞
0

+
n

s

∫ ∞
0

Ctn−1e−stdt
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The left term is 0 since we are assuming s > 0 and we proceed with the same method with
the right term. Eventually we get

F (s) ≥ n!

sn

∫ ∞
0

Ce−stdt =
Cn!

sn+1

which is exactly what we wanted.
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