Homework 8 Sample Solutions

Problem #6. Let F : R" — R" be C''. Suppose that the autonomous system X’ = F(X)
admits a global solution X (t) with X () = C'costE; + CsintEs for some C > 0, i.e. X (¢)
parameterizes a circle.

(a) Show that if n = 2 and | Xo| < C, then the solution to the IVP

X' =F(X)
{ X(0) = X,

must satisfy | X (¢)| < C.

Solution. Most of you had the right idea on this one, but you must be rigorous! My solution
is as follows:

Let X (t) be the solution to the IVP above. Suppose that | X (t1)| > C for some t;
(I'll assume t; > 0 for simplicity; the t; < 0 case is almost identical). Then | X (¢)| is a
continuous function, so there exists at t5 € (0,¢;) such that | X (t2)| = C by the intermediate
value theorem.

Now, let S = {t € (0,t2) : | X(t)] = C}, and let t3 = inf S (the infimum used here is
the greatest lower bound of this set). I claim that t3 is actually in S. That is, I claim that
| X (t3)] = C. To see this, note that for any e > 0, [t3,t3 + &) NS # @ (this is a property
of the infimum). Thus, there always exists some ¢ € [t3,t3 + ) NS, and by construction,
| X (t)] = C. Since t is arbitrarily close to t3 and |X ()| is continuous, it follows that
| X (t3)| = C as claimed.

Now consider the IVP given by

Y’ = F(Y)
{ Y (t3) = X(t3)

(using our particular solution X that we have been considering).

Now, the local uniqueness theorem says that there exists some a > 0 for which this IVP
has a unique solution on the domain (t3 — a,t3 + a). On the one hand, our X (¢) is clearly
such a solution. On the other hand, we have the solution X..(t) = C costE; + CsintEs,.
This is not necessarily a solution of the above IVP, but we can change variables to make
it so. After all, there exists some t, for which X.(t4) = X (t3). Then we simply consider
Y (t) = Xeire(t +t4 —t3). By construction, Y is another solution to the IVP, and |Y (¢)| = C
for all t. But | X (t3 — a/2)| < C since t3 is the infimum of S.

Thus, X and Y differ at the point ¢3 — a/2, which is in (t3 — a, t3 + a), which contradicts
the local uniqueness theorem. Hence, we conclude that | X (t)| < C for all ¢. O
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Problem #7. Show that if u : [a,b] — R is a C' function that satisfies the differential
inequality
u' < g(t),

where ¢ is continuous, then, for t € [a, b],
t
u(t) < u(a)ett=2 +/ =9 g(s)ds.

Solution. This follows the same method as solving a differential equation with an integrating
factor. First, we move a term over.

u' — pu < g(t)

Next, we multiply both sides by e #. This does not change the inequality sign because e #¢
is always positive. We get

The equality on the left is just the product rule. Now, there is a property of integrals that
if ¢ <dand f(t) < h(t) for all t € (a,b), then [ f(t)dt < [*h(t)dt. Applying this to the

above, we get

/:d% (u(s)e™*) ds = u(t)e ™ — u(a)e " < /atg(s)e‘“sds

for any ¢ € [a,b]. Adding a term back and multiplying by e**; which is positive for all ¢, we
get

t
u(t) < u(a)et=o —i—/ "= g(s)ds
as desired. 0

Problem #8. Show that if u : [a,b) — R is a positive C' function that satisfies the
differential inequality
u > pu

for © > 0, then we must have b < a + m

Solution. Since u? > 0, we can divide by it without changing inequality signs. We get
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Integrate both sides from a to t € [a, b) to get




Note that since ﬁ > 0, we have

for all ¢ € [a,b). Taking the limit as ¢t — b, we get ﬁ > u(b — a). Multiply each side by

oy . u(a) .
the positive quantity ;= to obtain

1
b—a

> u(a)p

Since both sides of the inequality are positive, inversion flips the inequality sign, hence
1
u(a)p
The desired result follows. O
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Problem #9. Use Problem #7, the Cauchy-Schwarz inequality, and the theorem on pg.
146 to show that if
F:R"—>R"

is C'! and satisfies |F(X)| < C|X| for some C' > 0, then the IVP

X' =F(X)
{ X(0) = Xo

has a global solution.

Solution. Let u(t) = |X (t)|*. The first thing to notice is that

d , d e
= SIX (0 = 2 (X (1) X (1) = 2X/(1) - X (1

—2F(X)- X <2F(X)- X| < 2|F(X)| X

u'(t)

where we’'ve used Cauchy-Schwarz at the last step. Using what we know about F', this says
that v’ < 2C|X| | X| = 2Cu.

Now, we know that there exists a maximal interval on which the solution X (t) exists.
Call it («, ), and suppose that f < oco. Consider any closed interval [a,b] C (a, ). By
Problem #7, the above implies that

u(t) < u(a)e??t=9
As a consequence, | X (t)| < u(a)e®? for all t € [a,b]. Since b could be anything in (a, 3),
this indeed holds for all ¢ € [a,3). This implies that lim; ,5u(t) < oo, which contradicts
the theorem on pg. 146. Hence, we conclude that § = co. A similar argument shows that
o = —o00, hence the claim is proved. O



