Homework 8 Sample Solutions

Problem \#6. Let $\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be C^{1}. Suppose that the autonomous system $\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X})$ admits a global solution $\boldsymbol{X}(t)$ with $\boldsymbol{X}(t)=C \cos t \boldsymbol{E}_{\mathbf{1}}+C \sin t \boldsymbol{E}_{\mathbf{2}}$ for some $C>0$, i.e. $\boldsymbol{X}(t)$ parameterizes a circle.
(a) Show that if $n=2$ and $\left|\boldsymbol{X}_{\mathbf{0}}\right|<C$, then the solution to the IVP

$$
\left\{\begin{array}{c}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(0)=\boldsymbol{X}_{0}
\end{array}\right.
$$

must satisfy $|\boldsymbol{X}(t)|<C$.
Solution. Most of you had the right idea on this one, but you must be rigorous! My solution is as follows:

Let $\boldsymbol{X}(t)$ be the solution to the IVP above. Suppose that $\left|\boldsymbol{X}\left(t_{1}\right)\right| \geq C$ for some t_{1} (I'll assume $t_{1}>0$ for simplicity; the $t_{1}<0$ case is almost identical). Then $|\boldsymbol{X}(t)|$ is a continuous function, so there exists at $t_{2} \in\left(0, t_{1}\right)$ such that $\left|\boldsymbol{X}\left(t_{2}\right)\right|=C$ by the intermediate value theorem.

Now, let $S=\left\{t \in\left(0, t_{2}\right):|\boldsymbol{X}(t)|=C\right\}$, and let $t_{3}=\inf S$ (the infimum used here is the greatest lower bound of this set). I claim that t_{3} is actually in S. That is, I claim that $\left|\boldsymbol{X}\left(t_{3}\right)\right|=C$. To see this, note that for any $\varepsilon>0,\left[t_{3}, t_{3}+\varepsilon\right) \cap S \neq \emptyset$ (this is a property of the infimum). Thus, there always exists some $t \in\left[t_{3}, t_{3}+\varepsilon\right) \cap S$, and by construction, $|\boldsymbol{X}(t)|=C$. Since t is arbitrarily close to t_{3} and $|\boldsymbol{X}(t)|$ is continuous, it follows that $\left|\boldsymbol{X}\left(t_{3}\right)\right|=C$ as claimed.

Now consider the IVP given by

$$
\left\{\begin{array}{c}
\boldsymbol{Y}^{\boldsymbol{\prime}}=\boldsymbol{F}(\boldsymbol{Y}) \\
\boldsymbol{Y}\left(t_{3}\right)=\boldsymbol{X}\left(t_{3}\right)
\end{array}\right.
$$

(using our particular solution \boldsymbol{X} that we have been considering).
Now, the local uniqueness theorem says that there exists some $a>0$ for which this IVP has a unique solution on the domain $\left(t_{3}-a, t_{3}+a\right)$. On the one hand, our $\boldsymbol{X}(t)$ is clearly such a solution. On the other hand, we have the solution $\boldsymbol{X}_{\text {circ }}(t)=C \cos t \boldsymbol{E}_{\mathbf{1}}+C \sin t \boldsymbol{E}_{\mathbf{2}}$. This is not necessarily a solution of the above IVP, but we can change variables to make it so. After all, there exists some t_{4} for which $\boldsymbol{X}_{\text {circ }}\left(t_{4}\right)=\boldsymbol{X}\left(t_{3}\right)$. Then we simply consider $\boldsymbol{Y}(t)=\boldsymbol{X}_{\text {circ }}\left(t+t_{4}-t_{3}\right)$. By construction, \boldsymbol{Y} is another solution to the IVP, and $|\boldsymbol{Y}(t)|=C$ for all t . But $\left|\boldsymbol{X}\left(t_{3}-a / 2\right)\right|<C$ since t_{3} is the infimum of S.

Thus, \boldsymbol{X} and \boldsymbol{Y} differ at the point $t_{3}-a / 2$, which is in $\left(t_{3}-a, t_{3}+a\right)$, which contradicts the local uniqueness theorem. Hence, we conclude that $|\boldsymbol{X}(t)|<C$ for all t.

Problem $\# 7$. Show that if $u:[a, b] \rightarrow \mathbb{R}$ is a C^{1} function that satisfies the differential inequality

$$
u^{\prime} \leq \mu u+g(t)
$$

where g is continuous, then, for $t \in[a, b]$,

$$
u(t) \leq u(a) e^{\mu(t-a)}+\int_{a}^{t} e^{\mu(t-s)} g(s) d s
$$

Solution. This follows the same method as solving a differential equation with an integrating factor. First, we move a term over.

$$
u^{\prime}-\mu u \leq g(t)
$$

Next, we multiply both sides by $e^{-\mu t}$. This does not change the inequality sign because $e^{-\mu t}$ is always positive. We get

$$
u^{\prime} e^{-\mu t}-\mu u e^{-\mu t}=\frac{d}{d t}\left(u e^{-\mu t}\right) \leq g(t) e^{-\mu t}
$$

The equality on the left is just the product rule. Now, there is a property of integrals that if $c \leq d$ and $f(t) \leq h(t)$ for all $t \in(a, b)$, then $\int_{c}^{d} f(t) d t \leq \int_{c}^{d} h(t) d t$. Applying this to the above, we get

$$
\int_{a}^{t} \frac{d}{d s}\left(u(s) e^{-\mu s}\right) d s=u(t) e^{-\mu t}-u(a) e^{-\mu a} \leq \int_{a}^{t} g(s) e^{-\mu s} d s
$$

for any $t \in[a, b]$. Adding a term back and multiplying by $e^{\mu t}$, which is positive for all t, we get

$$
u(t) \leq u(a) e^{\mu(t-a)}+\int_{a}^{t} e^{\mu(t-s)} g(s) d s
$$

as desired.
Problem $\# 8$. Show that if $u:[a, b) \rightarrow \mathbb{R}$ is a positive C^{1} function that satisfies the differential inequality

$$
u^{\prime} \geq \mu u^{2}
$$

for $\mu>0$, then we must have $b \leq a+\frac{1}{u(a) \mu}$.
Solution. Since $u^{2}>0$, we can divide by it without changing inequality signs. We get

$$
\frac{u^{\prime}}{u^{2}} \geq \mu
$$

Integrate both sides from a to $t \in[a, b)$ to get

$$
\frac{1}{u(a)}-\frac{1}{u(t)} \geq \mu(t-a)
$$

Note that since $\frac{1}{u(t)}>0$, we have

$$
\frac{1}{u(a)} \geq \frac{1}{u(a)}-\frac{1}{u(t)} \geq \mu(t-a)
$$

for all $t \in[a, b)$. Taking the limit as $t \rightarrow b$, we get $\frac{1}{u(a)} \geq \mu(b-a)$. Multiply each side by the positive quantity $\frac{u(a)}{b-a}$ to obtain

$$
\frac{1}{b-a} \geq u(a) \mu
$$

Since both sides of the inequality are positive, inversion flips the inequality sign, hence

$$
b-a \leq \frac{1}{u(a) \mu}
$$

The desired result follows.
Problem \#9. Use Problem $\# 7$, the Cauchy-Schwarz inequality, and the theorem on pg. 146 to show that if

$$
\boldsymbol{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is C^{1} and satisfies $|\boldsymbol{F}(\boldsymbol{X})| \leq C|\boldsymbol{X}|$ for some $C>0$, then the IVP

$$
\left\{\begin{array}{c}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(0)=\boldsymbol{X}_{0}
\end{array}\right.
$$

has a global solution.
Solution. Let $u(t)=|\boldsymbol{X}(t)|^{2}$. The first thing to notice is that

$$
\begin{aligned}
u^{\prime}(t) & =\frac{d}{d t}|\boldsymbol{X}(t)|^{2}=\frac{d}{d t}(\boldsymbol{X}(t) \cdot \boldsymbol{X}(t))=2 \boldsymbol{X}^{\prime}(t) \cdot \boldsymbol{X}(t) \\
& =2 \boldsymbol{F}(\boldsymbol{X}) \cdot \boldsymbol{X} \leq 2|\boldsymbol{F}(\boldsymbol{X}) \cdot \boldsymbol{X}| \leq 2|\boldsymbol{F}(\boldsymbol{X})||\boldsymbol{X}|
\end{aligned}
$$

where we've used Cauchy-Schwarz at the last step. Using what we know about \boldsymbol{F}, this says that $u^{\prime} \leq 2 C|\boldsymbol{X}||\boldsymbol{X}|=2 C u$.

Now, we know that there exists a maximal interval on which the solution $\boldsymbol{X}(t)$ exists. Call it (α, β), and suppose that $\beta<\infty$. Consider any closed interval $[a, b] \subset(\alpha, \beta)$. By Problem \#7, the above implies that

$$
u(t) \leq u(a) e^{2 C(t-a)}
$$

As a consequence, $|\boldsymbol{X}(t)| \leq u(a) e^{C(t-a)}$ for all $t \in[a, b]$. Since b could be anything in (a, β), this indeed holds for all $t \in[a, \beta)$. This implies that $\lim _{t \rightarrow \beta} u(t)<\infty$, which contradicts the theorem on pg. 146. Hence, we conclude that $\beta=\infty$. A similar argument shows that $\alpha=-\infty$, hence the claim is proved.

