
Homework 8 Sample Solutions

Problem #6. Let F : Rn → Rn be C1. Suppose that the autonomous system X ′ = F (X)
admits a global solution X(t) with X(t) = C cos tE1 + C sin tE2 for some C > 0, i.e. X(t)
parameterizes a circle.

(a) Show that if n = 2 and |X0| < C, then the solution to the IVP{
X ′ = F (X)
X(0) = X0

must satisfy |X(t)| < C.

Solution. Most of you had the right idea on this one, but you must be rigorous! My solution
is as follows:

Let X(t) be the solution to the IVP above. Suppose that |X(t1)| ≥ C for some t1
(I’ll assume t1 > 0 for simplicity; the t1 < 0 case is almost identical). Then |X(t)| is a
continuous function, so there exists at t2 ∈ (0, t1) such that |X(t2)| = C by the intermediate
value theorem.

Now, let S = {t ∈ (0, t2) : |X(t)| = C}, and let t3 = inf S (the infimum used here is
the greatest lower bound of this set). I claim that t3 is actually in S. That is, I claim that
|X(t3)| = C. To see this, note that for any ε > 0, [t3, t3 + ε) ∩ S 6= ∅ (this is a property
of the infimum). Thus, there always exists some t ∈ [t3, t3 + ε) ∩ S, and by construction,
|X(t)| = C. Since t is arbitrarily close to t3 and |X(t)| is continuous, it follows that
|X(t3)| = C as claimed.

Now consider the IVP given by {
Y ′ = F (Y )

Y (t3) = X(t3)

(using our particular solution X that we have been considering).
Now, the local uniqueness theorem says that there exists some a > 0 for which this IVP

has a unique solution on the domain (t3 − a, t3 + a). On the one hand, our X(t) is clearly
such a solution. On the other hand, we have the solution Xcirc(t) = C cos tE1 + C sin tE2.
This is not necessarily a solution of the above IVP, but we can change variables to make
it so. After all, there exists some t4 for which Xcirc(t4) = X(t3). Then we simply consider
Y (t) = Xcirc(t+ t4− t3). By construction, Y is another solution to the IVP, and |Y (t)| = C
for all t. But |X(t3 − a/2)| < C since t3 is the infimum of S.

Thus, X and Y differ at the point t3− a/2, which is in (t3− a, t3 + a), which contradicts
the local uniqueness theorem. Hence, we conclude that |X(t)| < C for all t.
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Problem #7. Show that if u : [a, b] → R is a C1 function that satisfies the differential
inequality

u′ ≤ µu+ g(t),

where g is continuous, then, for t ∈ [a, b],

u(t) ≤ u(a)eµ(t−a) +

∫ t

a

eµ(t−s)g(s)ds.

Solution. This follows the same method as solving a differential equation with an integrating
factor. First, we move a term over.

u′ − µu ≤ g(t)

Next, we multiply both sides by e−µt. This does not change the inequality sign because e−µt

is always positive. We get

u′e−µt − µue−µt =
d

dt

(
ue−µt

)
≤ g(t)e−µt

The equality on the left is just the product rule. Now, there is a property of integrals that
if c ≤ d and f(t) ≤ h(t) for all t ∈ (a, b), then

∫ d
c
f(t)dt ≤

∫ d
c
h(t)dt. Applying this to the

above, we get ∫ t

a

d

ds

(
u(s)e−µs

)
ds = u(t)e−µt − u(a)e−µa ≤

∫ t

a

g(s)e−µsds

for any t ∈ [a, b]. Adding a term back and multiplying by eµt, which is positive for all t, we
get

u(t) ≤ u(a)eµ(t−a) +

∫ t

a

eµ(t−s)g(s)ds

as desired.

Problem #8. Show that if u : [a, b) → R is a positive C1 function that satisfies the
differential inequality

u′ ≥ µu2

for µ > 0, then we must have b ≤ a+ 1
u(a)µ

.

Solution. Since u2 > 0, we can divide by it without changing inequality signs. We get

u′

u2
≥ µ

Integrate both sides from a to t ∈ [a, b) to get

1

u(a)
− 1

u(t)
≥ µ(t− a)
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Note that since 1
u(t)

> 0, we have

1

u(a)
≥ 1

u(a)
− 1

u(t)
≥ µ(t− a)

for all t ∈ [a, b). Taking the limit as t → b, we get 1
u(a)
≥ µ(b − a). Multiply each side by

the positive quantity u(a)
b−a to obtain

1

b− a
≥ u(a)µ

Since both sides of the inequality are positive, inversion flips the inequality sign, hence

b− a ≤ 1

u(a)µ

The desired result follows.

Problem #9. Use Problem #7, the Cauchy-Schwarz inequality, and the theorem on pg.
146 to show that if

F : Rn → Rn

is C1 and satisfies |F (X)| ≤ C|X| for some C > 0, then the IVP{
X ′ = F (X)
X(0) = X0

has a global solution.

Solution. Let u(t) = |X(t)|2. The first thing to notice is that

u′(t) =
d

dt
|X(t)|2 =

d

dt
(X(t) ·X(t)) = 2X ′(t) ·X(t)

= 2F (X) ·X ≤ 2|F (X) ·X| ≤ 2|F (X)| |X|

where we’ve used Cauchy-Schwarz at the last step. Using what we know about F , this says
that u′ ≤ 2C|X| |X| = 2Cu.

Now, we know that there exists a maximal interval on which the solution X(t) exists.
Call it (α, β), and suppose that β < ∞. Consider any closed interval [a, b] ⊂ (α, β). By
Problem #7, the above implies that

u(t) ≤ u(a)e2C(t−a)

As a consequence, |X(t)| ≤ u(a)eC(t−a) for all t ∈ [a, b]. Since b could be anything in (a, β),
this indeed holds for all t ∈ [a, β). This implies that limt→β u(t) < ∞, which contradicts
the theorem on pg. 146. Hence, we conclude that β = ∞. A similar argument shows that
α = −∞, hence the claim is proved.
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