Homework 8 Sample Solutions

Problem #6. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be C^1 . Suppose that the autonomous system X' = F(X) admits a global solution X(t) with $X(t) = C \cos t E_1 + C \sin t E_2$ for some C > 0, i.e. X(t) parameterizes a circle.

(a) Show that if n = 2 and $|X_0| < C$, then the solution to the IVP

$$\begin{cases} \mathbf{X}' = \mathbf{F}(\mathbf{X}) \\ \mathbf{X}(0) = \mathbf{X}_0 \end{cases}$$

must satisfy $|\mathbf{X}(t)| < C$.

Solution. Most of you had the right idea on this one, but you must be rigorous! My solution is as follows:

Let $\mathbf{X}(t)$ be the solution to the IVP above. Suppose that $|\mathbf{X}(t_1)| \geq C$ for some t_1 (I'll assume $t_1 > 0$ for simplicity; the $t_1 < 0$ case is almost identical). Then $|\mathbf{X}(t)|$ is a continuous function, so there exists at $t_2 \in (0, t_1)$ such that $|\mathbf{X}(t_2)| = C$ by the intermediate value theorem.

Now, let $S = \{t \in (0, t_2) : |\mathbf{X}(t)| = C\}$, and let $t_3 = \inf S$ (the infimum used here is the greatest lower bound of this set). I claim that t_3 is actually in S. That is, I claim that $|\mathbf{X}(t_3)| = C$. To see this, note that for any $\varepsilon > 0$, $[t_3, t_3 + \varepsilon) \cap S \neq \emptyset$ (this is a property of the infimum). Thus, there always exists some $t \in [t_3, t_3 + \varepsilon) \cap S$, and by construction, $|\mathbf{X}(t)| = C$. Since t is arbitrarily close to t_3 and $|\mathbf{X}(t)|$ is continuous, it follows that $|\mathbf{X}(t_3)| = C$ as claimed.

Now consider the IVP given by

$$\begin{cases} \mathbf{Y'} = \mathbf{F}(\mathbf{Y}) \\ \mathbf{Y}(t_3) = \mathbf{X}(t_3) \end{cases}$$

(using our particular solution X that we have been considering).

Now, the local uniqueness theorem says that there exists some a > 0 for which this IVP has a unique solution on the domain $(t_3 - a, t_3 + a)$. On the one hand, our $\mathbf{X}(t)$ is clearly such a solution. On the other hand, we have the solution $\mathbf{X}_{circ}(t) = C \cos t \mathbf{E_1} + C \sin t \mathbf{E_2}$. This is not necessarily a solution of the above IVP, but we can change variables to make it so. After all, there exists some t_4 for which $\mathbf{X}_{circ}(t_4) = \mathbf{X}(t_3)$. Then we simply consider $\mathbf{Y}(t) = \mathbf{X}_{circ}(t+t_4-t_3)$. By construction, \mathbf{Y} is another solution to the IVP, and $|\mathbf{Y}(t)| = C$ for all t. But $|\mathbf{X}(t_3 - a/2)| < C$ since t_3 is the infimum of S.

Thus, X and Y differ at the point $t_3 - a/2$, which is in $(t_3 - a, t_3 + a)$, which contradicts the local uniqueness theorem. Hence, we conclude that |X(t)| < C for all t.

Problem #7. Show that if $u : [a, b] \to \mathbb{R}$ is a C^1 function that satisfies the differential *inequality*

$$u' \le \mu u + g(t),$$

where g is continuous, then, for $t \in [a, b]$,

$$u(t) \le u(a)e^{\mu(t-a)} + \int_{a}^{t} e^{\mu(t-s)}g(s)ds.$$

Solution. This follows the same method as solving a differential equation with an integrating factor. First, we move a term over.

$$u' - \mu u \le g(t)$$

Next, we multiply both sides by $e^{-\mu t}$. This does not change the inequality sign because $e^{-\mu t}$ is always positive. We get

$$u'e^{-\mu t} - \mu u e^{-\mu t} = \frac{d}{dt} \left(u e^{-\mu t} \right) \le g(t)e^{-\mu t}$$

The equality on the left is just the product rule. Now, there is a property of integrals that if $c \leq d$ and $f(t) \leq h(t)$ for all $t \in (a, b)$, then $\int_c^d f(t)dt \leq \int_c^d h(t)dt$. Applying this to the above, we get

$$\int_{a}^{t} \frac{d}{ds} \left(u(s)e^{-\mu s} \right) ds = u(t)e^{-\mu t} - u(a)e^{-\mu a} \le \int_{a}^{t} g(s)e^{-\mu s} ds$$

for any $t \in [a, b]$. Adding a term back and multiplying by $e^{\mu t}$, which is positive for all t, we get

$$u(t) \le u(a)e^{\mu(t-a)} + \int_a^t e^{\mu(t-s)}g(s)ds$$

as desired.

Problem #8. Show that if $u : [a, b) \to \mathbb{R}$ is a *positive* C^1 function that satisfies the differential inequality

 $u' \ge \mu u^2$

for $\mu > 0$, then we must have $b \le a + \frac{1}{u(a)\mu}$.

Solution. Since $u^2 > 0$, we can divide by it without changing inequality signs. We get

$$\frac{u'}{u^2} \ge \mu$$

Integrate both sides from a to $t \in [a, b)$ to get

$$\frac{1}{u(a)} - \frac{1}{u(t)} \ge \mu(t-a)$$

Note that since $\frac{1}{u(t)} > 0$, we have

$$\frac{1}{u(a)} \ge \frac{1}{u(a)} - \frac{1}{u(t)} \ge \mu(t-a)$$

for all $t \in [a, b)$. Taking the limit as $t \to b$, we get $\frac{1}{u(a)} \ge \mu(b - a)$. Multiply each side by the positive quantity $\frac{u(a)}{b-a}$ to obtain

$$\frac{1}{b-a} \ge u(a)\mu$$

Since both sides of the inequality are positive, inversion flips the inequality sign, hence

$$b-a \le \frac{1}{u(a)\mu}$$

The desired result follows.

Problem #9. Use Problem #7, the Cauchy-Schwarz inequality, and the theorem on pg. 146 to show that if

$$F: \mathbb{R}^n \to \mathbb{R}^n$$

is C^1 and satisfies $|F(X)| \leq C|X|$ for some C > 0, then the IVP

$$\begin{cases} \mathbf{X'} = \mathbf{F}(\mathbf{X}) \\ \mathbf{X}(0) = \mathbf{X}_0 \end{cases}$$

has a global solution.

Solution. Let $u(t) = |\mathbf{X}(t)|^2$. The first thing to notice is that

$$u'(t) = \frac{d}{dt} |\mathbf{X}(t)|^2 = \frac{d}{dt} (\mathbf{X}(t) \cdot \mathbf{X}(t)) = 2\mathbf{X'}(t) \cdot \mathbf{X}(t)$$
$$= 2\mathbf{F}(\mathbf{X}) \cdot \mathbf{X} \le 2|\mathbf{F}(\mathbf{X}) \cdot \mathbf{X}| \le 2|\mathbf{F}(\mathbf{X})| |\mathbf{X}|$$

where we've used Cauchy-Schwarz at the last step. Using what we know about F, this says that $u' \leq 2C|X| |X| = 2Cu$.

Now, we know that there exists a maximal interval on which the solution X(t) exists. Call it (α, β) , and suppose that $\beta < \infty$. Consider any closed interval $[a, b] \subset (\alpha, \beta)$. By Problem #7, the above implies that

$$u(t) \le u(a)e^{2C(t-a)}$$

As a consequence, $|\mathbf{X}(t)| \leq u(a)e^{C(t-a)}$ for all $t \in [a, b]$. Since b could be anything in (a, β) , this indeed holds for all $t \in [a, \beta)$. This implies that $\lim_{t\to\beta} u(t) < \infty$, which contradicts the theorem on pg. 146. Hence, we conclude that $\beta = \infty$. A similar argument shows that $\alpha = -\infty$, hence the claim is proved.