
Solutions Final Exam — May. 13, 2015

1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers.

A sequence, {an}n∈N, of real numbers, is Cauchy if and only if for every ε > 0, there is a
N ∈ N so that if m,n > N , then |an − am| < ε.

(b) (5 points) Give an example of a sequence of real numbers, {an}n∈N, which satisfies limn→∞ |an+1−
an| → 0, but which is not Cauchy. You do not need to justify your answer.

The sequence an =
∑n

i=1
1
i , satisfies |an+1−an| = 1

n+1 which goes to zero as n→∞. However,
this sequence does not have a finite limit and so cannot be Cauchy (by the completeness of
the reals).
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(c) (15 points) Arguing directly from the definition, show that if both {an}n∈N and {bn}n∈N are
Cauchy, then so is the sequence {anbn}n∈N.

First observe that both {an}n∈N and {bn}n∈N are bounded. Indeed, by definition, there is
an N ∈ N so that for all n > N , |aN+1 − an| < 1 and |bN+1 − bn| < 1. Hence, by the
triangle inequality, if n > N , then |an| < |aN+1| + 1 and |bn| < |bN+1| + 1. Hence, if
M = max {|a1|, |b1|, . . . , |aN+1|, |bN+1|} + 1 < ∞ we have |an| < M and |bn| < M for all
n ∈ N.

To conclude, we observe that for any ε > 0, there is an N so that if n,m > N , then |an−am| <
1
2M

−1ε and |bn − bm| < 1
2M

−1ε (as both sequences are Cauchy). Hence, for any n,m > N

|anbn − ambm| = |anbn + anbm − anbm + ambm| ≤ |an||bn − bm|+ |bm||an − am| < ε.

This proves the claim.
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2. (a) (10 points) State the formal definition of a compact subset (of R).

A set, A, is compact if and only if every sequence of {an}n∈N with an ∈ A possesses a finite
limit point contained in A. That is, possesses a subsequence which converges to a point in A.

(b) (5 points) Give an example of a non-compact set A and a continuous function f : A→ R so that
there is no x0 ∈ A so that f(x0) ≥ f(x) for all x ∈ A – i.e., f does not achieve its maximum. You
do not need to justify your answer.

We have shown that a set is compact if and only if it is closed and bounded. Hence, the set
of integers Z is an example of a non-compact set. As no point of Z is a limit point, every
function is continuous. In particular, f(n) = n is continuous and unbounded from above (and
so cannot achieve its maximum).
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(c) (15 points) Show that if A ⊂ R is compact and non-empty and f : A → R is continuous, then
there is a value x0 ∈ A so that f(x0) ≥ f(x) for all x ∈ A.

Let B = f(A) = {y ∈ R : y = f(x), x ∈ A} – this set is non-empty as A is. Let M = supB ∈
(−∞,∞]. There is a sequence, {bn}n∈N so that bn ∈ B and limn→∞ bn →M . Pick an ∈ A so
that f(an) = bn. Clearly, {an}n∈N is a sequence in A. In particular, as A is compact, there
is a finite limit point a ∈ A of this sequence. That is, there is a subsequence

{
am(n)

}
n∈N so

that limn→∞ am(n) = a. The continuity of f implies that

f(a) = f( lim
n→∞

am(n)) = lim
n→∞

f(am(n)) = lim
n→∞

bn = M.

This proves the claim with x0 = a.
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3. (a) (10 points) State the mean value theorem.

For a < b and a continuous function f : [a, b] → R which is differentiable at each point of
(a, b), there is a value c ∈ (a, b) so that

f ′(c) =
f(b)− f(a)

b− a
.

(b) (5 points) Give an example of a function f : (−1, 1) → R with the property that there is no
differentiable function F : (−1, 1)→ R with F ′ = f . You do not need to justify your answer.

The function

f(x) =

{
−1 x ≤ 0
1 x > 0

cannot be the derivative of any function as the derivative of a differentiable function must
satisfy the conclusions of the intermediate value theorem.
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(c) (15 points) Show that if f : (a, b) → R is differentiable and supx∈(a,b) |f ′(x)| < C, then for all
x, y ∈ (a, b), |f(x)− f(y)| ≤ C|x− y|.

If x = y, then this is immediate. If x 6= y, then this follows immediately from the mean value
theorem applied to f on the interval [x, y] (when x < y – if y < x apply it on [y, x]).
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4. (a) (10 points) State one of the (equivalent) definitions of a function f : [a, b] → R being Riemann
integrable.

f is Riemann integrable if it is bounded and for every ε > 0, there is a δ > 0, so that if P is
a partition with |P | < δ, then Osc(f, P ) = S+(f, P )− S−(f, P ) < ε.

(b) (10 points) Give an example of a function f : [0, 1] → R which is not Riemann integrable. You
do not need to justify your answer.

Consider Dirichlet’s function f(x) =

{
1 x rational
0 x irrational

This is not Riemann integrable on

[0, 1] as the upper sum (for any partition) is always 1 while the lower sum is always 0. That
is, the osciallation is always 1 no matter the partition.
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(c) (20 points) Using the definition from (a) directly, show that if f : [a, b] → R is continuous, then
it is Riemann integrable.

As f is continuous and [a, b] is compact, f is uniformly continuous and is bounded. Using
the uniform continuity of f , given an ε > 0, pick δ > 0 so that |x − y| < δ implies |f(x) −
f(y)| < ε

b−a . For any partition, P = {a = x0 < x1 < . . . < xn = b} we have S+(f, P ) =∑n
i=1Mi(xi − xi−1) where Mi = sup[xi−1,xi] f(x) and S−(f, P ) =

∑n
i=1mi(xi − xi−1) where

mi = inf [xi−1,xi] f(x). By the continuity of f and compactness of [xi−1, xi] we have Mi = f(ai)
and mi = f(bi). Hence, if |P | < δ, then Mi −mi <

ε
b−a as |ai − bi| < δ and so

Osc(f, P ) =
n∑
i=1

(Mi −mi)(xi − xi−1) <
n∑
i=1

ε

b− a
(xi − xi−1) = ε.

Where the first inequality used that xi − xi−1 ≥ 0.
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5. (a) (15 points) State both directions of the fundamental theorem of calculus

Integration is the inverse of differentiation: If f : I → R is C1 and x0 ∈ I for some interval I,
then for all x ∈ I, f(x)− f(x0) =

∫ x
x0
f ′(t)dt

Differentiation is the inverse of integration. If f : I → R is continuous for some interval I and
F (x) =

∫ x
x0
f(t)dt for some x0 ∈ I. Then F is C1 and F ′(x) = f(x).
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(b) (5 points) Give a Riemann integrable function, f : [−1, 1] → R, for which the function F (x) =∫ x
0 f(t)dt is not differentiable at some point of (−1, 1). You do not need to justify your answer.

The Heaviside function

f(x) =

{
1 x < 0
0 x ≥ 0

has a single jump discontinuity and so is Riemann integrable. For this function F (x) =
1
2 (|x|+ x) and this function is not differentiable at x = 0.

(c) (10 points) Suppose f, g : (a, b)→ R are C1 and that [c, d] ⊂ (a, b). Show that∫ d

c
f ′(x)g(x)dx = f(d)g(d)− f(c)g(c)−

∫ d

c
f(x)g′(x)dx.

By the Leibniz rule h(x) = f(x)g(x) is differentiable and its derivative is h′(x) = f ′(x)g(x) +
f(x)g′(x). This is a continuous function – that is, h is C1 – indeed, both f ′ and g are
continuous and so their product is, the same is true of f and g′ and so h′ is the sum of two
continuous functions. Hence, we may apply the fundamental theorem of calculus to h′ and so
obtain

h(d)− h(c) =

∫ d

c
h′(x)dx =

∫ d

c
f ′(x)g(x) + f(x)g′(x)dx

That is,

f(d)g(d)− f(c)g(c) =

∫ d

c
f ′(x)g(x) + f(x)g′(x)dx

and we obtain the result by rewriting things.
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6. (a) (10 points) Fix an interval I ⊂ R and let fn : I → R, n ∈ N, and f : I → R be functions. State
the definition of fn converging uniformly to f .

The functions fn converge uniformly to f if and only if

lim
n→∞

sup
x∈I
|fn(x)− f(x)| → 0.

(b) (10 points) Give an example of a power series
∑∞

n=0 anx
n which converges pointwise on (−1, 1)

but not uniformly. You do not need to justify your answer.

The geometric series
∞∑
n=0

xn

can be check to converge at each point x ∈ (−1, 1) to the value 1
1−x . This convergence cannot

be uniform as the uniform limit of uniformly continuous functions must be uniformly contin-
uous. Clearly, each partial sum is uniformly continuous on (−1, 1) (as they are polynomials),
however the function 1/(1− x) is not uniformly continuous.
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(c) (20 points) Fix an interval I ⊂ R and let fn : I → R, n ∈ N, be functions which satisfy

1. for all x ∈ I and n ∈ N, 0 ≤ fn+1(x) ≤ fn(x), and

2. for all x ∈ I, limn→∞ supx∈I fn(x) = 0.

Show that the series
∑∞

n=1(−1)nfn(x) converges uniformly on I. Hint: show that for m > N :

0 ≤ (−1)N
m∑

k=N

(−1)kfk(x) ≤ fN (x).

We first observe that for each fixed x0 ∈ I, the series

∞∑
n=1

(−1)nfn(x0)

converges. To see this note that the two conditions 1) and 2) imply that this series sat-
isfies the alternating series test. Indeed, limn→∞ fn(x0) = 0 – this is because 1) implies
lim infn→∞ fn(x0) ≥ 0 and 2) implies lim supn→∞ fn(x0) ≤ 0. To see this directly fix x ∈ I
and set

SN (x0) =

N∑
n=1

(−1)nfn(x0)

and observe that S2N+2(x0) ≤ S2N (x0) and S2N+3(x0) ≥ S2N+1(x0) and S2N+1(x0) ≤
S2N (x0). Hence, the sequence {S2N (x0)}N∈N is monotone non-increasing and is bounded
from below and so converges to some finite limit S+(x0). Likewise, {S2N+1(x0)}N∈N is
bounded from above and non-decreasing and so converges to some finite limit S−(x0). As
S2N+1 − S2N = (−1)2N+1f2N+1(x0) is tending to zero, we have that S+(x0) = S−(x0) and
that the partial sums converge to this common value.

Hence, there is a well defined function f : I → R be given by f(x) =
∑∞

n=1(−1)nfn(x) and
the Sn converge pointwise to f . To see the uniform convergence, observe now that for a fixed
N and for all m > N and x0 ∈ I

(−1)N
m∑

k=N

(−1)kfk(x0) ≤ fN (x0).

Indeed, this follows from 1) and an induction argument (it is immediate when m = N + 1 and
m = N + 2 – the induction is straightforward). Hence,

0 ≤ (−1)N
m∑

k=N

(−1)kfk(x0) ≤ sup
x∈I

fN (x)

In other words, f(x0)−S2N−1(x0) ≤ supx∈I f2N (x) and f(x0)−S2N (x0) ≥ − supx∈I f2N+1(x).
That is,

sup
x∈I
|f(x)− Sn(x)| ≤ sup

x∈I
fn+1(x)

since the right hand side tends to zero by 2) so does the left hand side which proves the claim.


