Solutions Final Exam - May. 13, 2015

1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers.

A sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of real numbers, is Cauchy if and only if for every $\epsilon>0$, there is a
$N \in \mathbb{N}$ so that if $m, n>N$, then $\left|a_{n}-a_{m}\right|<\epsilon$.
(b) (5 points) Give an example of a sequence of real numbers, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, which satisfies $\lim _{n \rightarrow \infty} \mid a_{n+1}-$ $a_{n} \mid \rightarrow 0$, but which is not Cauchy. You do not need to justify your answer.

The sequence $a_{n}=\sum_{i=1}^{n} \frac{1}{i}$, satisfies $\left|a_{n+1}-a_{n}\right|=\frac{1}{n+1}$ which goes to zero as $n \rightarrow \infty$. However, this sequence does not have a finite limit and so cannot be Cauchy (by the completeness of the reals).
(c) (15 points) Arguing directly from the definition, show that if both $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are Cauchy, then so is the sequence $\left\{a_{n} b_{n}\right\}_{n \in \mathbb{N}}$.

First observe that both $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are bounded. Indeed, by definition, there is an $N \in \mathbb{N}$ so that for all $n>N,\left|a_{N+1}-a_{n}\right|<1$ and $\left|b_{N+1}-b_{n}\right|<1$. Hence, by the triangle inequality, if $n>N$, then $\left|a_{n}\right|<\left|a_{N+1}\right|+1$ and $\left|b_{n}\right|<\left|b_{N+1}\right|+1$. Hence, if $M=\max \left\{\left|a_{1}\right|,\left|b_{1}\right|, \ldots,\left|a_{N+1}\right|,\left|b_{N+1}\right|\right\}+1<\infty$ we have $\left|a_{n}\right|<M$ and $\left|b_{n}\right|<M$ for all $n \in \mathbb{N}$.
To conclude, we observe that for any $\epsilon>0$, there is an N so that if $n, m>N$, then $\left|a_{n}-a_{m}\right|<$ $\frac{1}{2} M^{-1} \epsilon$ and $\left|b_{n}-b_{m}\right|<\frac{1}{2} M^{-1} \epsilon$ (as both sequences are Cauchy). Hence, for any $n, m>N$

$$
\left|a_{n} b_{n}-a_{m} b_{m}\right|=\left|a_{n} b_{n}+a_{n} b_{m}-a_{n} b_{m}+a_{m} b_{m}\right| \leq\left|a_{n}\right|\left|b_{n}-b_{m}\right|+\left|b_{m}\right|\left|a_{n}-a_{m}\right|<\epsilon .
$$

This proves the claim.
2. (a) (10 points) State the formal definition of a compact subset (of $\mathbb{R})$.

A set, A, is compact if and only if every sequence of $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ with $a_{n} \in A$ possesses a finite limit point contained in A. That is, possesses a subsequence which converges to a point in A.
(b) (5 points) Give an example of a non-compact set A and a continuous function $f: A \rightarrow \mathbb{R}$ so that there is no $x_{0} \in A$ so that $f\left(x_{0}\right) \geq f(x)$ for all $x \in A$-i.e., f does not achieve its maximum. You do not need to justify your answer.

We have shown that a set is compact if and only if it is closed and bounded. Hence, the set of integers \mathbb{Z} is an example of a non-compact set. As no point of \mathbb{Z} is a limit point, every function is continuous. In particular, $f(n)=n$ is continuous and unbounded from above (and so cannot achieve its maximum).
(c) (15 points) Show that if $A \subset \mathbb{R}$ is compact and non-empty and $f: A \rightarrow \mathbb{R}$ is continuous, then there is a value $x_{0} \in A$ so that $f\left(x_{0}\right) \geq f(x)$ for all $x \in A$.

Let $B=f(A)=\{y \in \mathbb{R}: y=f(x), x \in A\}$ - this set is non-empty as A is. Let $M=\sup B \in$ $(-\infty, \infty]$. There is a sequence, $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ so that $b_{n} \in B$ and $\lim _{n \rightarrow \infty} b_{n} \rightarrow M$. Pick $a_{n} \in A$ so that $f\left(a_{n}\right)=b_{n}$. Clearly, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in A. In particular, as A is compact, there is a finite limit point $a \in A$ of this sequence. That is, there is a subsequence $\left\{a_{m(n)}\right\}_{n \in \mathbb{N}}$ so that $\lim _{n \rightarrow \infty} a_{m(n)}=a$. The continuity of f implies that

$$
f(a)=f\left(\lim _{n \rightarrow \infty} a_{m(n)}\right)=\lim _{n \rightarrow \infty} f\left(a_{m(n)}\right)=\lim _{n \rightarrow \infty} b_{n}=M .
$$

This proves the claim with $x_{0}=a$.
3. (a) (10 points) State the mean value theorem.

For $a<b$ and a continuous function $f:[a, b] \rightarrow \mathbb{R}$ which is differentiable at each point of (a, b), there is a value $c \in(a, b)$ so that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(b) (5 points) Give an example of a function $f:(-1,1) \rightarrow \mathbb{R}$ with the property that there is no differentiable function $F:(-1,1) \rightarrow \mathbb{R}$ with $F^{\prime}=f$. You do not need to justify your answer.

The function

$$
f(x)=\left\{\begin{array}{cc}
-1 & x \leq 0 \\
1 & x>0
\end{array}\right.
$$

cannot be the derivative of any function as the derivative of a differentiable function must satisfy the conclusions of the intermediate value theorem.
(c) (15 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is differentiable and $\sup _{x \in(a, b)}\left|f^{\prime}(x)\right|<C$, then for all $x, y \in(a, b),|f(x)-f(y)| \leq C|x-y|$.

If $x=y$, then this is immediate. If $x \neq y$, then this follows immediately from the mean value theorem applied to f on the interval $[x, y]$ (when $x<y$ - if $y<x$ apply it on $[y, x]$).
4. (a) (10 points) State one of the (equivalent) definitions of a function $f:[a, b] \rightarrow \mathbb{R}$ being Riemann integrable.
f is Riemann integrable if it is bounded and for every $\epsilon>0$, there is a $\delta>0$, so that if P is a partition with $|P|<\delta$, then $O s c(f, P)=S^{+}(f, P)-S^{-}(f, P)<\epsilon$.
(b) (10 points) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is not Riemann integrable. You do not need to justify your answer.

Consider Dirichlet's function $f(x)=\left\{\begin{array}{cc}1 & x \text { rational } \\ 0 & x \text { irrational }\end{array}\right.$ This is not Riemann integrable on $[0,1]$ as the upper sum (for any partition) is always 1 while the lower sum is always 0 . That is, the osciallation is always 1 no matter the partition.
(c) (20 points) Using the definition from (a) directly, show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it is Riemann integrable.

As f is continuous and $[a, b]$ is compact, f is uniformly continuous and is bounded. Using the uniform continuity of f, given an $\epsilon>0$, pick $\delta>0$ so that $|x-y|<\delta$ implies $\mid f(x)-$ $f(y) \left\lvert\,<\frac{\epsilon}{b-a}\right.$. For any partition, $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ we have $S^{+}(f, P)=$ $\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)$ where $M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f(x)$ and $S^{-}(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)$ where $m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f(x)$. By the continuity of f and compactness of $\left[x_{i-1}, x_{i}\right]$ we have $M_{i}=f\left(a_{i}\right)$ and $m_{i}=f\left(b_{i}\right)$. Hence, if $|P|<\delta$, then $M_{i}-m_{i}<\frac{\epsilon}{b-a}$ as $\left|a_{i}-b_{i}\right|<\delta$ and so

$$
O s c(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)<\sum_{i=1}^{n} \frac{\epsilon}{b-a}\left(x_{i}-x_{i-1}\right)=\epsilon .
$$

Where the first inequality used that $x_{i}-x_{i-1} \geq 0$.
5. (a) (15 points) State both directions of the fundamental theorem of calculus

Integration is the inverse of differentiation: If $f: I \rightarrow \mathbb{R}$ is C^{1} and $x_{0} \in I$ for some interval I, then for all $x \in I, f(x)-f\left(x_{0}\right)=\int_{x_{0}}^{x} f^{\prime}(t) d t$
Differentiation is the inverse of integration. If $f: I \rightarrow \mathbb{R}$ is continuous for some interval I and $F(x)=\int_{x_{0}}^{x} f(t) d t$ for some $x_{0} \in I$. Then F is C^{1} and $F^{\prime}(x)=f(x)$.
(b) (5 points) Give a Riemann integrable function, $f:[-1,1] \rightarrow \mathbb{R}$, for which the function $F(x)=$ $\int_{0}^{x} f(t) d t$ is not differentiable at some point of $(-1,1)$. You do not need to justify your answer.

The Heaviside function

$$
f(x)= \begin{cases}1 & x<0 \\ 0 & x \geq 0\end{cases}
$$

has a single jump discontinuity and so is Riemann integrable. For this function $F(x)=$ $\frac{1}{2}(|x|+x)$ and this function is not differentiable at $x=0$.
(c) (10 points) Suppose $f, g:(a, b) \rightarrow \mathbb{R}$ are C^{1} and that $[c, d] \subset(a, b)$. Show that

$$
\int_{c}^{d} f^{\prime}(x) g(x) d x=f(d) g(d)-f(c) g(c)-\int_{c}^{d} f(x) g^{\prime}(x) d x
$$

By the Leibniz rule $h(x)=f(x) g(x)$ is differentiable and its derivative is $h^{\prime}(x)=f^{\prime}(x) g(x)+$ $f(x) g^{\prime}(x)$. This is a continuous function - that is, h is C^{1} - indeed, both f^{\prime} and g are continuous and so their product is, the same is true of f and g^{\prime} and so h^{\prime} is the sum of two continuous functions. Hence, we may apply the fundamental theorem of calculus to h^{\prime} and so obtain

$$
h(d)-h(c)=\int_{c}^{d} h^{\prime}(x) d x=\int_{c}^{d} f^{\prime}(x) g(x)+f(x) g^{\prime}(x) d x
$$

That is,

$$
f(d) g(d)-f(c) g(c)=\int_{c}^{d} f^{\prime}(x) g(x)+f(x) g^{\prime}(x) d x
$$

and we obtain the result by rewriting things.
6. (a) (10 points) Fix an interval $I \subset \mathbb{R}$ and let $f_{n}: I \rightarrow \mathbb{R}, n \in \mathbb{N}$, and $f: I \rightarrow \mathbb{R}$ be functions. State the definition of f_{n} converging uniformly to f.

The functions f_{n} converge uniformly to f if and only if

$$
\lim _{n \rightarrow \infty} \sup _{x \in I}\left|f_{n}(x)-f(x)\right| \rightarrow 0 .
$$

(b) (10 points) Give an example of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ which converges pointwise on $(-1,1)$ but not uniformly. You do not need to justify your answer.

The geometric series

$$
\sum_{n=0}^{\infty} x^{n}
$$

can be check to converge at each point $x \in(-1,1)$ to the value $\frac{1}{1-x}$. This convergence cannot be uniform as the uniform limit of uniformly continuous functions must be uniformly continuous. Clearly, each partial sum is uniformly continuous on $(-1,1)$ (as they are polynomials), however the function $1 /(1-x)$ is not uniformly continuous.
(c) (20 points) Fix an interval $I \subset \mathbb{R}$ and let $f_{n}: I \rightarrow \mathbb{R}, n \in \mathbb{N}$, be functions which satisfy

1. for all $x \in I$ and $n \in \mathbb{N}, 0 \leq f_{n+1}(x) \leq f_{n}(x)$, and
2. for all $x \in I, \lim _{n \rightarrow \infty} \sup _{x \in I} f_{n}(x)=0$.

Show that the series $\sum_{n=1}^{\infty}(-1)^{n} f_{n}(x)$ converges uniformly on I. Hint: show that for $m>N$:

$$
0 \leq(-1)^{N} \sum_{k=N}^{m}(-1)^{k} f_{k}(x) \leq f_{N}(x)
$$

We first observe that for each fixed $x_{0} \in I$, the series

$$
\sum_{n=1}^{\infty}(-1)^{n} f_{n}\left(x_{0}\right)
$$

converges. To see this note that the two conditions 1) and 2) imply that this series satisfies the alternating series test. Indeed, $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)=0$ - this is because 1) implies $\liminf _{n \rightarrow \infty} f_{n}\left(x_{0}\right) \geq 0$ and 2) implies $\lim \sup _{n \rightarrow \infty} f_{n}\left(x_{0}\right) \leq 0$. To see this directly fix $x \in I$ and set

$$
S_{N}\left(x_{0}\right)=\sum_{n=1}^{N}(-1)^{n} f_{n}\left(x_{0}\right)
$$

and observe that $S_{2 N+2}\left(x_{0}\right) \leq S_{2 N}\left(x_{0}\right)$ and $S_{2 N+3}\left(x_{0}\right) \geq S_{2 N+1}\left(x_{0}\right)$ and $S_{2 N+1}\left(x_{0}\right) \leq$ $S_{2 N}\left(x_{0}\right)$. Hence, the sequence $\left\{S_{2 N}\left(x_{0}\right)\right\}_{N \in \mathbb{N}}$ is monotone non-increasing and is bounded from below and so converges to some finite limit $S_{+}\left(x_{0}\right)$. Likewise, $\left\{S_{2 N+1}\left(x_{0}\right)\right\}_{N \in \mathbb{N}}$ is bounded from above and non-decreasing and so converges to some finite limit $S_{-}\left(x_{0}\right)$. As $S_{2 N+1}-S_{2 N}=(-1)^{2 N+1} f_{2 N+1}\left(x_{0}\right)$ is tending to zero, we have that $S_{+}\left(x_{0}\right)=S_{-}\left(x_{0}\right)$ and that the partial sums converge to this common value.
Hence, there is a well defined function $f: I \rightarrow \mathbb{R}$ be given by $f(x)=\sum_{n=1}^{\infty}(-1)^{n} f_{n}(x)$ and the S_{n} converge pointwise to f. To see the uniform convergence, observe now that for a fixed N and for all $m>N$ and $x_{0} \in I$

$$
(-1)^{N} \sum_{k=N}^{m}(-1)^{k} f_{k}\left(x_{0}\right) \leq f_{N}\left(x_{0}\right) .
$$

Indeed, this follows from 1) and an induction argument (it is immediate when $m=N+1$ and $m=N+2-$ the induction is straightforward). Hence,

$$
0 \leq(-1)^{N} \sum_{k=N}^{m}(-1)^{k} f_{k}\left(x_{0}\right) \leq \sup _{x \in I} f_{N}(x)
$$

In other words, $f\left(x_{0}\right)-S_{2 N-1}\left(x_{0}\right) \leq \sup _{x \in I} f_{2 N}(x)$ and $f\left(x_{0}\right)-S_{2 N}\left(x_{0}\right) \geq-\sup _{x \in I} f_{2 N+1}(x)$. That is,

$$
\sup _{x \in I}\left|f(x)-S_{n}(x)\right| \leq \sup _{x \in I} f_{n+1}(x)
$$

since the right hand side tends to zero by 2) so does the left hand side which proves the claim.

