Practice Midterm 1 Math 405 Fall 2013

1. (10 pts each) True or false; justify as much as you can.
a. Two uncountable sets have the same cardinality
b. The numbers of the form $\frac{k}{3^{n}}, k, n \in \mathbb{N}$ are dense in \mathbb{R}^{+}.
c. For any $a \geq 0,(1+a)^{n} \geq 1+n a$ for all $n \in \mathbb{N}$.
d. Any sequence of decreasing nested intervals $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \cdots$, with length of I_{n} decreasing to zero, has nonempty intersection, i.e. $\cap_{n=1}^{\infty} I_{n} \neq \emptyset$.
2. (20 pts) Let $\left\{s_{n}\right\}_{1}^{\infty}$ be a sequence of real numbers such that $s_{n}>0$ for $n>k$. Suppose $s=\lim _{n \rightarrow \infty} s_{n}$ exists and is a finite real number. Prove that $s \geq 0$. Carefully justify all of the steps.
3. (20 pts) Let $\left\{a_{n}\right\}$ be a sequence of rationals and let $\left\{b_{n}\right\}$ be an equivalent sequence of rationals. If the sequence $\left\{a_{n}\right\}$ is Cauchy, show the sequence $\left\{b_{n}\right\}$ is also Cauchy.

4a. (10pts)Let $S=\left\{x \in \mathbb{R}: x^{2}<x\right\}$. Find $\sup S$
4b. (10 pts) Let $a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right), n=1,2, \ldots$.
Find $\sup \left\{a_{n}\right\}, \inf \left\{a_{n}\right\}, \lim \sup \left\{a_{n}\right\}, \lim \inf \left\{a_{n}\right\}$.

