Practice Midterm 1 Math 405 Fall 2013

- 1. (10 pts each) True or false; justify as much as you can.
 - a. Two uncountable sets have the same cardinality
 - b. The numbers of the form $\frac{k}{3^n}$, $k, n \in \mathbb{N}$ are dense in \mathbb{R}^+ .
 - c. For any $a \ge 0$, $(1+a)^n \ge 1 + na$ for all $n \in \mathbb{N}$.

d. Any sequence of decreasing nested intervals $I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \cdots$, with length of I_n decreasing to zero, has nonempty intersection, i.e. $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

2. (20 pts) Let $\{s_n\}_1^\infty$ be a sequence of real numbers such that $s_n > 0$ for n > k. Suppose $s = \lim_{n \to \infty} s_n$ exists and is a finite real number. Prove that $s \ge 0$. Carefully justify all of the steps.

3. (20 pts) Let $\{a_n\}$ be a sequence of rationals and let $\{b_n\}$ be an equivalent sequence of rationals. If the sequence $\{a_n\}$ is Cauchy, show the sequence $\{b_n\}$ is also Cauchy.

4a. (10pts)Let $S = \{x \in \mathbb{R} : x^2 < x\}$. Find sup S4b. (10 pts) Let $a_n = (-1)^n (1 + \frac{1}{n}), n = 1, 2, ...$ Find sup $\{a_n\}$, inf $\{a_n\}$, lim sup $\{a_n\}$, lim inf $\{a_n\}$.