Mathematic 405, Fall 2014: Assignment \#1

Due: Friday, February 7th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. p. 13 \# 1
Problem \#2. p. $13 \# 2$
Problem \#3. p. $13 \# 4$
Problem \#4. p. $37 \# 2$
Problem \#5. p. $37 \# 3$
Problem \#6. p. 37 \# 4
Problem \#7. p. $37 \# 5$
Problem \#8. Show that there is no $x \in \mathbb{Q}$ so that $x^{2}=6$.
Problem \#9. The so-called Babylonian method for finding the square root of $S \in \mathbb{Q}^{+}$is a recursive algorithm defined as follows: Start with any $x_{0} \in \mathbb{Q}^{+}$and define

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{S}{x_{n}}\right) .
$$

a) Show $S \leq x_{n+1}^{2}$ and hence $x_{n+1} \leq x_{n}$ for $n \geq 1$. Conclude that the closed intervals $I_{n}=\left[\frac{S}{x_{n}}, x_{n}\right]$ contain \sqrt{S} in the sense that $\left(\frac{S}{x_{n}}\right)^{2} \leq S$ and $S \leq x_{n}^{2}$ and form a decreasing nested sequence $I_{n+1} \subset I_{n}$.
b) Show that the lengths of I_{n} satisfy $\left|I_{n+1}\right| \leq \frac{1}{2}\left|I_{n}\right|$.
c) Show that $\left\{x_{n}\right\}$ is a Cauchy sequence over the rationals.
d) (optional) What goes wrong when $S<0$?
(Note that one can take $S>0$ real and obtain a a Cauchy sequence over the reals.)

