Mathematic 405, Fall 2014: Assignment #1

Due: Friday, February 7th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

- Problem #1.
 p. 13 # 1

 Problem #2.
 p. 13 # 2

 Problem #3.
 p. 13 # 4

 Problem #4.
 p. 37 # 2

 Problem #5.
 p. 37 # 3

 Problem #6.
 p. 37 # 4
- **Problem #7.** p. 37 # 5

Problem #8. Show that there is no $x \in \mathbb{Q}$ so that $x^2 = 6$.

Problem #9. The so-called Babylonian method for finding the square root of $S \in \mathbb{Q}^+$ is a recursive algorithm defined as follows: Start with any $x_0 \in \mathbb{Q}^+$ and define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{S}{x_n} \right).$$

- a) Show $S \le x_{n+1}^2$ and hence $x_{n+1} \le x_n$ for $n \ge 1$. Conclude that the closed intervals $I_n = \left[\frac{S}{x_n}, x_n\right]$ contain \sqrt{S} in the sense that $\left(\frac{S}{x_n}\right)^2 \le S$ and $S \le x_n^2$ and form a decreasing nested sequence $I_{n+1} \subset I_n$.
- b) Show that the lengths of I_n satisfy $|I_{n+1}| \leq \frac{1}{2}|I_n|$.
- c) Show that $\{x_n\}$ is a Cauchy sequence over the rationals.
- d) (optional) What goes wrong when S < 0?

(Note that one can take S > 0 real and obtain a Cauchy sequence over the reals.)