Math 405, Spring 2014: Assignment #6

Due: Friday, March 28th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem #1. Let $f : D \to \mathbb{R}$ be uniformly continuous. Show that for every $x_0 \in \overline{D}$, that $\lim_{x \to x_0} f(x)$ exists (Hint: Construct a Cauchy sequence). Recall, this is not the case if f is only continuous.

Problem #2. Let $f: D \to \mathbb{R}$ be differentiable at $x_0 \in D$ and $g(x) = f(x_0) + m(x - x_0)$ be an affine function.

- a) Show that $f g = O(|x x_0|), x \to x_0$.
- b) Show $f g = o(|x x_0|), x \to x_0$ if and only if $m = f'(x_0)$.
- c) (Extra Credit) If f is not differentiable at x_0 , is it true that $f g \neq O(|x x_0|), x \to x_0$.

Problem #3. pg. 152 # 1.

- **Problem #4.** pg. 152 # 3.
- **Problem #5.** pg. 152 # 6.
- **Problem #6.** pg. 152 # 7.
- **Problem #7.** pg. 152 # 9.

Problem #8. pg. 163 # 2.