Math 405, Spring 2014: Assignment # 7

Due: Friday, April 7th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem #1. Let I = (a, b) be an interval. Show that if $f : I \to \mathbb{R}$ is differentiable and $|f'| < M < \infty$, then f is Lipschitz with Lipschitz constant M. Give an example to show that this is not possible without the uniform bound (i.e. give a differentiable function which is not Lipschitz.) Hint: use the Mean Value Theorem.

Problem #2. Let I = (a, b) be an interval. Suppose that $f : I \to R$ is differentiable. Show that for any compact interval $I_{\delta} \subset I$ with $I_{\delta} = [x_0 - \delta, x_0 + \delta]$, one has

- a) $f(I_{\delta})$ is a compact interval.
- b) $|f(I_{\delta})| 2|f'(x_0)|\delta = o(\delta), \delta \to 0$. Here |I| means the length of a compact interval I, so $|I_{\delta}| = 2\delta$. That is, $|f'(x_0)|$ measures the extent to which f distorts length near x_0 .
- c) (Optional) Give a "geometric" interpretation of the chain rule using the above observation.
- **Problem #3.** p. 163 # 4
- **Problem #4.** p. 163 # 8
- **Problem #5.** p. 163 # 10
- **Problem #6.** p. 163 # 13
- **Problem #7.** p. 176 # 1

Problem #8. p 176 # 4