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Introduction

These notes are intended as a companion to a text on introductory real analysis.
Typically, books on the subject begin with an axiomatic development of the real
number system. However, one can get the feeling that there is more emphasis on the
axioms than on the development. For example, [BS] lists no fewer than 14 axioms
for the real number system: the well ordering property of the natural numbers
(basically, the principle of induction), 9 algebraic identities, 3 order axioms, and
the supremum property (basically, the completeness property).

On the other hand, it has been known since the beginning of this century that
one can make do with a tiny list of axioms for the natural numbers (i.e., the positive
integers), and then build the rest of the edifice logically, obtaining the remaining
“axioms” of the real number system, most particularly the crucial completeness
property, as theorems.

The task of these notes is to give an account of that development.
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1. Peano arithmetic

In Peano arithmetic, we assume we have a set N (the natural numbers). We
assume given 0 /∈ N, and form Ñ = N ∪ {0}. We assume there is a map

(1.1) s : Ñ −→ N,

which is bijective. That is to say, for each k ∈ N, there is a j ∈ Ñ such that s(j) = k,
so s is surjective; and furthermore, if s(j) = s(j′) then j = j′, so s is injective. The
map s plays the role of “addition by 1,” as we will see below. The only other axiom
of Peano arithmetic is that the principle of mathematical induction holds. In other
words, if S ⊂ Ñ is a set with the properties

(1.2) 0 ∈ S, k ∈ S ⇒ s(k) ∈ S,

then S = Ñ.
Actually, applying the induction principle to S = {0} ∪ s(Ñ), we see that it

suffices to assume that s in (1.1) is injective; the induction principle ensures that
it is surjective.

We define addition x + y, for x, y ∈ Ñ, inductively on y, by

(1.3) x + 0 = x, x + s(y) = s(x + y).

Next, we define multiplication x · y, inductively on y, by

(1.4) x · 0 = 0, x · s(y) = x · y + x.

We also define

(1.5) 1 = s(0).

We now prove the basic laws of arithmetic.

Proposition 1.1. x + 1 = s(x).

Proof. x + s(0) = s(x + 0).

Proposition 1.2. 0 + x = x.

Proof. Use induction on x. First, 0 + 0 = 0. Now, assuming 0 + x = x, we have

0 + s(x) = s(0 + x) = s(x).
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Proposition 1.3. s(y + x) = s(y) + x.

Proof. Use induction on x. First, s(y + 0) = s(y) = s(y) + 0. Next, we have

s(y + s(x)) = ss(y + x),

s(y) + s(x) = s(s(y) + x).

Proposition 1.4. x + y = y + x.

Proof. Use induction on y. The case y = 0 follows from Proposition 1.2. Now,
assuming x + y = y + x, for all x ∈ Ñ, we must show s(y) has the same property.
In fact,

x + s(y) = s(x + y) = s(y + x),

and by Proposition 1.3 the last quantity is equal to s(y) + x.

Proposition 1.5. (x + y) + z = x + (y + z).

Proof. Use induction on z. First, (x + y) + 0 = x + y = x + (y + 0). Now, assuming
(x+y)+ z = x+(y + z), for all x, y ∈ Ñ, we must show s(z) has the same property.
In fact,

(x + y) + s(z) = s((x + y) + z),

x + (y + s(z)) = x + s(y + z) = s(x + (y + z)),

and we perceive the desired identity.

Proposition 1.6. x · 1 = x.

Proof. We have
x · s(0) = x · 0 + x = 0 + x = x,

the last identity by Proposition 1.2.

Proposition 1.7. 0 · y = 0.

Proof. Use induction on y. First, 0 · 0 = 0. Next, assuming 0 · y = 0, we have
0 · s(y) = 0 · y + 0 = 0 + 0 = 0.

Proposition 1.8. s(x) · y = x · y + y.

Proof. Use induction on y. First, s(x) · 0 = 0, while x · 0 + 0 = 0 + 0 = 0. Next,
assuming s(x) · y = x · y + y, for all x, we must show that s(y) has this property.
In fact,

s(x) · s(y) = s(x) · y + s(x) = (x · y + y) + (x + 1),

x · s(y) + s(y) = (x · y + x) + (y + 1),

and identity then follows via the commutative and associative laws of addition.
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Proposition 1.9. x · y = y · x.

Proof. Use induction on y. First, x ·0 = 0 = 0 ·x, the latter identity by Proposition
1.7. Next, assuming x ·y = y ·x for all x ∈ Ñ, we must show that s(y) has the same
property. In fact,

x · s(y) = x · y + x = y · x + x,

s(y) · x = y · x + x,

the last identity by Proposition 1.8.

Proposition 1.10. (x + y) · z = x · z + y · z.

Proof. Use induction on z. First, the identity clearly holds for z = 0. Next, assuming
it holds for z (for all x, y ∈ Ñ), we must show it holds for s(z). In fact,

(x + y) · s(z) = (x + y) · z + (x + y) = (x · z + y · z) + (x + y),

x · s(z) + y · s(z) = (x · z + x) + (y · z + y),

and the desired identity follows from the commutative and associative laws of ad-
dition.

Proposition 1.11. (x · y) · z = x · (y · z).

Proof. Use induction on z. First, the identity clearly holds for z = 0. Next, assuming
it holds for z (for all x, y ∈ Ñ), we have

(x · y) · s(z) = (x · y) · z + x · y,

while
x · (y · s(z)) = x · (y · z + y) = x · (y · z) + x · y,

the last identity by Proposition 1.10. These observations yield the desired identity.

We next demonstrate the cancellation law of addition:

Proposition 1.12. Given x, y, z ∈ Ñ,

(1.6) x + y = z + y =⇒ x = z.

Proof. Use induction on y. If y = 0, (1.6) obviously holds. Assuming (1.6) holds
for y, we must show that

(1.7) x + s(y) = z + s(y)

implies x = z. In fact, (1.7) is equivalent to s(x + y) = s(z + y). Since the map s is
assumed to be one-to-one, this implies that x + y = z + y, so we are done.

We next define an order relation on Ñ. Given x, y ∈ Ñ, we say

(1.8) x < y ⇐⇒ y = x + u, for some u ∈ N.

Similarly there is a definition of x ≤ y. We have x ≤ y if and only if y ∈ Rx, where

(1.9) Rx = {x + u : u ∈ Ñ}.
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Proposition 1.13. If x ≤ y and y ≤ x then x = y.

Proof. The hypotheses imply

(1.10) y = x + u, x = y + v, u, v ∈ Ñ.

Hence x = x + u + v, so, by Proposition 1.12, u + v = 0. Now, if v 6= 0, then
v = s(w), so u + v = s(u + w) ∈ N. Thus v = 0, and u = 0.

Proposition 1.14. Given x, y ∈ Ñ, either

(1.11) x < y, or x = y, or y < x,

and no two can hold.

Proof. That no two of (1.11) can hold follows from Proposition 1.13. To show that
one must hold, we want to show that

(1.12) y /∈ Rx =⇒ y < x.

To do this, use induction on y. If 0 /∈ Rx, then x 6= 0, so x ∈ N, and hence x = 0+x
shows that 0 < x. Now, assuming that y has the property (1.12), we must show
that s(y) has this property.

So assume s(y) /∈ Rz. Since R0 = Ñ, we deduce that z 6= 0, hence z ∈ N, hence
z = s(x) for some x. But

s(y) /∈ Rs(x) ⇐⇒ y /∈ Rx.

The inductive hypothesis gives x = y + u, u ∈ N, hence s(x) = s(y) + u, and we
are done.

We can now establish the cancellation law for multiplication.

Proposition 1.15. Given x, y, z ∈ Ñ,

(1.13) x · y = x · z, x 6= 0 =⇒ y = z.

Proof. If y 6= z, then either y < z or z < y. Suppose y < z, i.e., z = y + u, u ∈ N.
Then the hypotheses of (1.13) imply

x · y = x · y + x · u, x 6= 0,

hence, by Proposition 1.12,

(1.14) x · u = 0, x 6= 0.

We thus need to show that (1.14) implies u = 0. In fact, if not, then we can write
u = s(w), and x = s(a), with w, a ∈ Ñ, and we have

x · u = x · w + s(a) = s(x · w + a) ∈ N.

This contradicts (1.14), so we are done.

We next establish the following variant of the principle of induction, called the
well-ordering property of Ñ.
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Proposition 1.16. If S ⊂ Ñ is nonempty, then S contains a smallest element.

Proof. Suppose S contains no smallest element. Then 0 /∈ S. Let

(1.15) T = {x ∈ Ñ : x < y, ∀ y ∈ S}.

Then 0 ∈ T. We claim that

(1.16) x ∈ T =⇒ s(x) ∈ T.

Indeed, suppose x ∈ T, so x < y for all y ∈ S. If s(x) /∈ T, we have s(x) ≥ y0 for
some y0 ∈ S. Now, using Proposition 1.13, one can show that

(1.17) x < y0, s(x) ≥ y0 =⇒ s(x) = y0.

In turn, from this one can deduce that y0 must be the smallest element of S. Thus,
if S has no smallest element, (1.16) must hold. The induction principle then implies
that T = Ñ, which implies S is empty.
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2. The integers

An integer is thought of as having the form x − a, with x, a ∈ Ñ. To be more
formal, we will define an element of Z as an equivalence class of ordered pairs
(x, a), x, a ∈ Ñ, where we define

(2.1) (x, a) ∼ (y, b) ⇐⇒ x + b = y + a.

Proposition 2.1. This is an equivalence relation.

Proof. We need to check that

(2.2) (x, a) ∼ (y, b), (y, b) ∼ (z, c) =⇒ (x, a) ∼ (z, c),

i.e., that, for x, y, z, a, b, c ∈ Ñ,

(2.3) x + b = y + a, y + c = z + b =⇒ x + c = z + a.

In fact, the hypotheses of (2.3) imply

(x + c) + (y + b) = (z + a) + (y + b),

and the conclusion of (2.3) then follows from the cancellation property, Proposition
1.12.

Let us denote the equivalence class containing (x, a) by [(x, a)]. We then define
addition and multiplication in Z to satisfy

(2.4)
[(x, a)] + [(y, b)] = [(x + y, a + b)],

[(x, a)] · [(y, b)] = [(xy + ab, ay + xb)].

To see that these operations are well defined, we need:

Proposition 2.2. If (x, a) ∼ (x′, a′) and (y, b) ∼ (y′, b′), then

(x + y, a + b) ∼ (x′ + y′, a′ + b′),

and
(xy + ab, ay + xb) ∼ (x′y′ + a′b′, a′y′ + x′b′).

Proof. The hypotheses say

x + a′ = x′ + a, y + b′ = y′ + b.
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The conclusions follow from results of §1.

Similarly, it is routine to verify the basic commutative, associative, etc. laws
incorporated in the next proposition. To formulate the results, set

m = [(x, a)], n = [(y, b)], k = [(z, c)] ∈ Z.

Also, define
0 = [(0, 0)], 1 = [(1, 0)],

and
−m = [(a, x)].

Proposition 2.3. We have

m + n = n + m,

(m + n) + k = m + (n + k),
m + 0 = m,

m + (−m) = 0,

mn = nm,

m(nk) = (mn)k,

m · 1 = m,

m · 0 = 0,

m · (−1) = −m,

m · (n + k) = m · n + m · k.

We next establish some cancellation laws.

Proposition 2.4. Given m, n, k ∈ Z,

(2.5) m + n = k + n =⇒ m = k.

Proof. We give two proofs. For one, we can add −n to both sides and use the
results of Proposition 2.3. Alternatively, we can write the hypotheses of (2.5) as

x + y + c + b = z + y + a + b

and use Proposition 1.12 to deduce that x + c = z + a.

Note that it is reasonable to set

m− n = m + (−n).
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Proposition 2.5. Given m, n, k ∈ Z,

(2.7) mk = nk, k 6= 0 =⇒ m = n.

Proof. The hypothesis of (2.7) says

xz + ac + (bz + yc) = yz + bc + (az + xc).

Hence

(2.8) (x + b)z + (a + y)c = (x + b)c + (a + y)z.

We want to deduce that

(2.9) x + b = y + a,

given that z 6= c. By Proposition 1.14, if z 6= c, then either z < c or c < z. Say
c < z, i.e., z = c + u, u ∈ N. Then (2.8) yields

(x + b + a + y)c + (x + b)u = (x + b + a + y)c + (a + y)u;

hence, by Proposition 1.12,

(x + b)u = (a + y)u.

This implies (2.9), by Proposition 1.15.

There is a natural injection

(2.10) N ↪→ Z, x 7→ [(x, 0)],

whose image we identify with N. Note that the map (2.10) preserves addition and
multiplication. There is also an injection x 7→ [(0, x)], whose image we identify with
−N.

Proposition 2.6. We have a disjoint union:

(2.11) Z = N ∪ {0} ∪ (−N).

Proof. Suppose m ∈ Z; write m = [(x, a)]. By Proposition 1.14, either

a < x, or x = a, or x < a.

In these three cases,

x = a + u, u ∈ N, or x = a, or a = x + v, v ∈ N.

Then, either

(x, a) ∼ (u, 0), or (x, a) ∼ (0, 0), or (x, a) ∼ (0, v).

We define an order on Z by:

(2.12) m < n ⇐⇒ n−m ∈ N.

We then have:
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Corollary 2.7. Given m, n ∈ Z, then either

(2.13) m < n, or m = n, or n < m,

and no two can hold.

The map (2.10) is seen to preserve order relations.
Another consequence of (2.11) and the argument around (1.14) is:

Proposition 2.8. If m,n ∈ Z and m · n = 0, then either m = 0 or n = 0.
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3. Prime factorization and the fundamental theorem of arithmetic

Let x ∈ N. We say x is composite if one can write

(3.1) x = ab, a, b ∈ N,

with neither a nor b equal to 1. If x 6= 1 is not composite, it is said to be prime. If
(3.1) holds, we say a|x (and that b|x), or that a is a divisor of x. Given x ∈ N, x > 1,
set

(3.2) Dx = {a ∈ N : a|x, a > 1}.

Thus x ∈ Dx, so Dx is non-empty. By Proposition 1.16, Dx contains a smallest
element, say p1. Clearly p1 is a prime. Set

(3.3) x = p1x1, x1 ∈ N, x1 < x.

The same construction applies to x1, which is > 1 unless x = p1. Hence we have
either x = p1 or

(3.4) x1 = p2x2, p2 prime , x2 < x1.

Continue this process, passing from xj to xj+1 as long as xj is not prime. The set
S of such xj ∈ N has a smallest element, say xµ−1 = pµ, and we have

(3.5) x = p1p2 · · · pµ, pj prime.

This is part of the Fundamental Theorem of Arithmetic:

Theorem 3.1. Given x ∈ N, there is a unique product expansion

(3.6) x = p1 · · · pµ,

where p1 ≤ · · · ≤ pµ are primes.

Only uniqueness remains to be established. This follows from:

Proposition 3.2. Assume a, b ∈ N < and p ∈ N is prime. Then

(3.7) p|ab =⇒ p|a or p|b.

We will deduce this from:
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Proposition 3.3. If p ∈ N is prime and a ∈ N, is not a multiple of p, or more
generally if p, a ∈ N have no common divisors > 1, then there exist m,n ∈ Z such
that

(3.8) ma + np = 1.

Proof of Proposition 3.2. Assume p is a prime which does not divide a. Pick m,n
such that (3.8) holds. Now, multiply (3.8) by b, to get

mab + npb = b.

Thus, if p|ab, i.e., ab = pk, we have

p(mk + nb) = b,

so p|b, as desired.

To prove Proposition 3.3, let us set

(3.9) Γ = {ma + np : m,n ∈ Z}.
Clearly Γ satisfies the following criterion:

Definition. A nonempty subset Γ ⊂ Z is a subgroup of Z provided

(3.10) a, b ∈ Γ =⇒ a + b, a− b ∈ Γ.

Proposition 3.4. If Γ ⊂ Z is a subgroup, then either Γ = {0}, or there exists
x ∈ N such that

(3.11) Γ = {mx : m ∈ Z}.

Proof. Note that n ∈ Γ ⇔ −n ∈ Γ, so, with Σ = Γ ∩ N, we have a disjoint union

Γ = Σ ∪ {0} ∪ (−Σ).

If Σ 6= ∅, let x be its smallest element. Then we want to establish (3.11), so set
Γ0 = {mx : m ∈ Z}. Clearly Γ0 ⊂ Γ. Similarly, set Σ0 = {mx : m ∈ N} = Γ0 ∩ N.
We want to show that Σ0 = Σ. If y ∈ Σ \ Σ0, then we can pick m0 ∈ N such that

m0x < y < (m0 + 1)x,

and hence
y −m0x ∈ Σ

is smaller than x. This contradiction proves Proposition 3.4.

Proof of Proposition 3.3. Taking Γ as in (3.9), pick x ∈ N such that (3.11) holds.
Since a ∈ Γ and p ∈ Γ, we have

a = m0x, p = m1x

for some mj ∈ Z. The assumption that a and p have no common divisor > 1 implies
x = 1. We conclude that 1 ∈ Γ, so (3.8) holds.
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4. The rational numbers

A rational number is thought of as having the form m/n, with m,n ∈ Z, n 6=
0. Thus, we will define an element of Q as an equivalence class of ordered pairs
m/n, m ∈ Z, n ∈ Z \ {0}, where we define

(4.1) m/n ∼ a/b ⇐⇒ mb = an.

Proposition 4.1. This is an equivalence relation.

Proof. We need to check that

(4.2) m/n ∼ a/b, a/b ∼ c/d =⇒ m/n ∼ c/d,

i.e., that, for m, a, c ∈ Z, n, b, d ∈ Z \ {0},

(4.3) mb = an, ad = cb =⇒ md = cn.

Now the hypotheses of (4.3) imply (mb)(ad) = (an)(cb), hence

(md)(ab) = (cn)(ab).

We are assuming b 6= 0. If also a 6= 0, then ab 6= 0, and the conclusion of (4.3)
follows from the cancellation property, Proposition 2.5. On the other hand, if
a = 0, then m/n ∼ a/b ⇒ mb = 0 ⇒ m = 0 (since b 6= 0), and similarly
a/b ∼ c/d ⇒ cb = 0 ⇒ c = 0, so the desired implication also holds in that case.

We will (temporarily) denote the equivalence class containing m/n by [m/n]. We
then define addition and multiplication in Q to satisfy

(4.4)
[m/n] + [a/b] = [(mb + na)/(nb)],

[m/n] · [a/b] = [(ma)/(nb)].

To see that these operations are well defined, we need:

Proposition 4.2. If m/n ∼ m′/n′ and a/b ∼ a′/b′, then

(mb + na)/(nb) ∼ (m′b′ + n′a′)/(n′b′),

and
(ma)/(nb) ∼ (m′a′)/(n′b′).

Proof. The hypotheses say

mn′ = m′n, ab′ = a′b.
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The conclusions follow from the results of §2.

From now on, we drop the brackets, simply denoting the equivalence class of
m/n by m/n, and writing (4.1) as m/n = a/b. We also may denote an element of
Q by a single letter, e.g., x = m/n. There is an injection

(4.5) Z ↪→ Q, m 7→ m/1,

whose image we identify with Z. This map preserves addition and multiplication.
We define

(4.6) −(m/n) = (−m)/n,

and, if x = m/n 6= 0, (i.e., m 6= 0 as well as n 6= 0), we define

(4.7) x−1 = n/m.

The results stated in the following proposition are routine consequences of the
results of §2.

Proposition 4.3. Given x, y, z ∈ Q, we have

x + y = y + x,

(x + y) + z = x + (y + z),
x + 0 = x,

x + (−x) = 0,

x · y = y · x,

(x · y) · z = x · (y · z),
x · 1 = x,

x · 0 = 0,

x · (−1) = −x,

x · (y + z) = x · y + x · z.

Furthermore,
x 6= 0 =⇒ x · x−1 = 1.

We also have cancellation laws:

Proposition 4.4. Given x, y, z ∈ Q,

(4.8) x + y = z + y =⇒ x = z.

Also,

(4.9) xy = zy, y 6= 0 =⇒ x = z.
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Proof. To get (4.8), add −y to both sides of x + y = z + y and use the results of
Proposition 4.3. To get (4.9), multiply both sides of x · y = z · y by y−1.

It is natural to define

(4.10) x− y = x + (−y),

and, if y 6= 0,

(4.11) x/y = x · y−1.

We now define the order relation on Q. Set

(4.12) Q+ = {m/n : mn > 0},
where, in (4.12), we use the order relation on Z, discussed in §2. This is well defined
(since (−m)(−n) = mn) and results of §2 imply that

(4.13) Q = Q+ ∪ {0} ∪ (−Q+)

is a disjoint uion, where −Q+ = {−x : x ∈ Q+}. Also, clearly

(4.14) x, y ∈ Q+ =⇒ x + y, xy,
x

y
∈ Q+.

We define

(4.15) x < y ⇐⇒ y − x ∈ Q+,

and we have, for any x, y ∈ Q, either

(4.16) x < y, or x = y, or y < x,

and no two can hold. The map (4.5) is seen to preserve the order relations. In light
of (4.14), we see that

(4.17) given x, y > 0, x < y ⇔ x

y
< 1 ⇔ 1

y
<

1
x

.

As usual, we say x ≤ y provided either x < y or x = y. Similarly there are natural
definitions of x > y and of x ≥ y.

The following result implies that Q has the Archimedean property.

Proposition 4.5. Given x ∈ Q, there exists k ∈ Z such that

(4.18) k − 1 < x ≤ k.

Proof. It suffices to prove (4.18) assuming x ∈ Q+; otherwise, work with −x. Say
x = m/n, m, n ∈ N. Then

S = {` ∈ N : ` ≥ x}
contains m, hence is nonempty. By Proposition 1.16, S has a smallest element; call
it k. Then k ≥ x. We cannot have k − 1 ≥ x, for then k − 1 would belong to S.
Hence (4.18) holds.
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5. Sequences

In this section, we discuss infinite sequences. For now, we deal with sequences
of rational numbers, but we will not explicitly state this restriction below. In fact,
once the set of real numbers is constructed in §6, the results of this section will be
seen to hold also for sequences of real numbers.

Definition. A sequence (aj) is said to converge to a limit a provided that, for any
n ∈ N, there exists K(n) such that

(5.1) j ≥ K(n) =⇒ |aj − a| < 1
n

.

We write aj → a, or a = lim aj , or perhaps a = limj→∞ aj .

Here, we define the absolute value |x| of x by

(5.2)
|x| = x if x ≥ 0,

−x if x < 0.

The absolute value function has various simple properties, such as |xy| = |x| ·
|y|, which follow readily from the definition. One basic property is the triangle
inequality:

(5.3) |x + y| ≤ |x|+ |y|.

In fact, if either x and y are both positive or they are both negative, one has equality
in (5.3). If x and y have opposite signs, then |x + y| ≤ max(|x|, |y|), which in turn
is dominated by the right side of (5.3).

Proposition 5.1. If aj → a and bj → b, then

(5.4) aj + bj → a + b,

and

(5.5) ajbj → ab.

If furthermore, bj 6= 0 for all j and b 6= 0, then

(5.6) aj/bj → a/b.

Proof. To see (5.4), we have, by (5.3),

(5.7) |(aj + bj)− (a + b)| ≤ |aj − a|+ |bj − b|.
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To get (5.5), we have

(5.8)
|ajbj − ab| = |(ajbj − abj) + (abj − ab)|

≤ |bj | · |aj − a|+ |a| · |b− bj |.
The hypotheses imply |bj | ≤ B, for some B, and hence the criterion for convergence
is readily verified. To get (5.6), we have

(5.9)
∣∣∣aj

bj
− a

b

∣∣∣ ≤ 1
|b| · |bj |

{|b| · |a− aj |+ |a| · |b− bj |
}
.

The hypotheses imply 1/|bj | ≤ M for some M, so we also verify the criterion for
convergence in this case.

We next define the concept of a Cauchy sequence.

Definition. A sequence (aj) is a Cauchy sequence provided that, for any n ∈ N,
there exists K(n) such that

(5.10) j, k ≥ K(n) =⇒ |aj − ak| ≤ 1
n

.

It is clear that any convergent sequence is Cauchy. On the other hand, we have:

Proposition 5.2. Any Cauchy sequence is bounded.

Proof. Take n = 1 in the definition above. Thus, if (aj) is Cauchy, there is a K
such that j, k ≥ K ⇒ |aj − ak| ≤ 1. Hence, j ≥ K ⇒ |aj | ≤ |aK |+ 1, so, for all j,

|aj | ≤ M, M = max
(|a1|, . . . , |aK−1|, |aK |+ 1

)
.

Now, the arguments proving Proposition 5.1 also establish:

Proposition 5.3. If (aj) and (bj) are Cauchy sequences, so are (aj + bj) and
(ajbj). Furthermore, if, for all j, |bj | ≥ c for some c > 0, then (aj/bj) is Cauchy.

The following proposition is a bit deeper than the first three.

Proposition 5.4. If (aj) is bounded, i.e., |aj | ≤ M for all j, then it has a Cauchy
subsequence.

Proof. We may as well assume M ∈ N. Now, either aj ∈ [0,M ] for infinitely many
j or aj ∈ [−M, 0] for infinitely many j. Let I1 be any one of these two intervals
containing aj for infinitely many j, and pick j(1) such that aj(1) ∈ I1. Write I1 as the
union of two closed intervals, of equal length, sharing only the midpoint of I1. Let
I2 be any one of them with the property that aj ∈ I2 for infinitely many j, and pick
j(2) > j(1) such that aj(2) ∈ I2. Continue, picking Iν ⊂ Iν−1 ⊂ · · · ⊂ I1, of length
M/2ν−1, containing aj for infinitely many j, and picking j(ν) > j(ν−1) > · · · > j(1)
such that aj(ν) ∈ Iν . Setting bν = aj(ν), we see that (bν) is a Cauchy subsequence
of (aj), since, for all k ∈ N,

|bν+k − bν | ≤ M/2ν−1.
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Proposition 5.5. Any bounded monotone sequence (aj) is Cauchy.

Proof. To say (aj) is monotone is to say that either (aj) is increasing, i.e., aj ≤ aj+1

for all j, or that (aj) is decreasing, i.e., aj ≥ aj+1 for all j. For the sake of argument,
assume (aj) is increasing.

By Proposition 5.4, there is a subsequence (bν) = (aj(ν)) which is Cauchy. Thus,
given n ∈ N, there exists K(n) such that

(5.11) µ, ν ≥ K(n) =⇒ |aj(ν) − aj(µ)| <
1
n

.

Now, if j(ν0) ≥ K(n) and k ≥ j ≥ j(ν0), pick ν1 such that j(ν1) ≥ k. Then

aj(ν0) ≤ aj ≤ ak ≤ aj(ν1),

so

(5.12) k ≥ j ≥ j(ν0) =⇒ |aj − ak| ≤ 1
n

.

We give a few simple but basic examples of convergent sequences.

Proposition 5.6. If |a| < 1, then aj → 0.

Proof. Set b = |a|; it suffices to show that bj → 0. Consider c = 1/b > 1, hence
c = 1 + y, y > 0. We claim that

cj = (1 + y)j ≥ 1 + jy,

for all j ≥ 1. In fact, this clearly holds for j = 1, and if it holds for j = k, then

ck+1 ≥ (1 + y)(1 + ky) > 1 + (k + 1)y.

Hence, by induction, the estimate is established. Consequently,

bj <
1
jy

,

so the appropriate analogue of (5.1) holds, with K(n) = Kn, for any integer K >
1/y.

Proposition 5.6 enables us to establish the following result on geometric series.

Proposition 5.7. If |x| < 1 and

aj = 1 + x + · · ·+ xj ,

then
aj → 1

1− x
.
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Proof. Note that xaj = x + x2 + · · ·+ xj+1, so (1− x)aj = 1− xj+1, i.e.,

aj =
1− xj+1

1− x
.

The conclusion follows from Proposition 5.6.

Note in particular that

(5.13) 0 < x < 1 =⇒ 1 + x + · · ·+ xj <
1

1− x
.

It is an important mathematical fact that not every Cauchy sequence of rational
numbers has a rational number as limit. We give one example here. Consider the
sequence

(5.14) aj =
j∑

`=0

1
`!

.

Then (aj) is increasing, and

an+j − an =
n+j∑

`=n+1

1
`!
≤ 1

n!

( 1
n + 1

+
1

(n + 1)2
+ · · ·+ 1

(n + 1)j

)
,

since (n + 1)(n + 2) · · · (n + j) ≥ (n + 1)j . Using (5.13), we have

(5.15) an+j − an ≤ 1
(n + 1)!

1
1− 1

n+1

=
1
n!
· 1
n

.

Hence (aj) is Cauchy. Taking n = 2, we see that

(5.16) j > 2 =⇒ 21
2 < aj < 2 3

4 .

Proposition 5.8. The sequence (5.14) cannot converge to a rational number.

Proof. Assume aj → m/n with m,n ∈ N. By (5.16), we must have n > 2. Now,
write

(5.17)
m

n
=

n∑

`=0

1
`!

+ r, r = lim
j→∞

(an+j − an).

Multiplying both sides of (5.17) by n! gives

(5.18) m(n− 1)! = A + r · n!

where

(5.19) A =
n∑

`=0

n!
`!
∈ N.

Thus the identity (5.17) forces r · n! ∈ N, while (5.15) implies

(5.20) 0 < r · n! ≤ 1/n.

This contradiction proves the proposition.
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6. The real numbers

We think of a real number as a quantity which can be specified by a process of
approximation arbitrarily closely by rational numbers. Thus, we define an element
of R as an equivalence class of Cauchy sequences of rational numbers, where we
define

(6.1) (aj) ∼ (bj) ⇐⇒ aj − bj → 0.

Proposition 6.1. This is an equivalence relation.

Proof. This is a straightforward consequence of Proposition 5.1. In particular, to
see that

(6.2) (aj) ∼ (bj), (bj) ∼ (cj) =⇒ (aj) ∼ (cj),

just use (5.4) of Proposition 5.1 to write

aj − bj → 0, bj − cj → 0 =⇒ aj − cj → 0.

We denote the equivalence class containing a Cauchy sequence (aj) by [(aj)]. We
then define addition and multiplication on R to satisfy

(6.3)
[(aj)] + [(bj)] = [(aj + bj)],

[(aj)] · [(bj)] = [(ajbj)].

To prove these operations are well defined, we need:

Proposition 6.2. If Cauchy sequences of rational numbers are given which satisfy
(aj) ∼ (a′j) and (bj) ∼ (b′j), then

(6.4) (aj + bj) ∼ (a′j + b′j),

and

(6.5) (ajbj) ∼ (a′jb
′
j).

The proof is a straightforward variant of the proof of parts (5.4)-(5.5) in Propo-
sition 5.1, with due account taken of Proposition 5.2.

There is a natural injection

(6.6) Q ↪→ R, a 7→ [(a, a, a, . . . )],
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whose image we identify with Q. This map preserves addition and multiplication.
If x = [(aj)], we define

(6.7) −x = [(−aj)].

For x 6= 0, we define x−1 as follows. First, to say x 6= 0 is to say there exists n ∈ N
such that |aj | ≥ 1/n for infinitely many j. Since (aj) is Cauchy, this implies that
there exists K such that |aj | ≥ 1/2n for all j ≥ K. Now, if we set αj = ak+j , we
have (αj) ∼ (aj); we propose to set

(6.8) x−1 = [(α−1
j )].

We claim that this is well defined. First, by Proposition 5.3, (α−1
j ) is Cauchy.

Furthermore, if for such x we also have x = [(bj)], and we pick K so large that also
|bj | ≥ 1/2n for all j ≥ K, and set βj = bK+j , we claim that

(6.9) (α−1
j ) ∼ (β−1

j ).

Indeed, we have

(6.10) |α−1
j − β−1

j | ≤ |βj − αj |
|αj | · |βj | ≤ 4n2|βj − αj |,

so (6.9) holds.
It is now a straightforward exercise to verify the basic algebraic properties of

addition and multiplication in R. We state the result.

Proposition 6.3. Given x, y, z ∈ R, all the algebraic properties stated in Proposi-
tion 4.3 hold.

As in (4.10)-(4.11), we define x− y = x + (−y) and, if y 6= 0, x/y = x · y−1.
We now define an order relation on R. Take x ∈ R, x = [(aj)]. From the dis-

cussion above of x−1, we see that, if x 6= 0, then one and only one of the following
holds. Either, for some n,K ∈ N,

(6.11) j ≥ K =⇒ aj ≥ 1
2n

,

or, for some n,K ∈ N,

(6.12) j ≥ K =⇒ aj ≤ − 1
2n

.

If (aj) ∼ (bj) and (6.11) holds for aj , it also holds for bj , and ditto for (6.12). If
(6.11) holds, we say x ∈ R+ (and we say x > 0), and if (6.12) holds we say x ∈ R−
(and we say x < 0). Clearly x > 0 if and only if −x < 0. It is also clear that the
map Q ↪→ R in (6.6) preserves the order relation.
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Thus we have the disjoint union

(6.13) R = R+ ∪ {0} ∪ R−, R− = −R+.

Also, clearly

(6.14) x, y ∈ R+ =⇒ x + y, xy ∈ R+.

As in (4.15), we define

(6.15) x < y ⇐⇒ y − x ∈ R+.

The following results are straightforward.

Proposition 6.4. For elements of R, we have

(6.16) x1 < y1, x2 < y2 =⇒ x1 + x2 < y1 + y2,

(6.17) x < y ⇐⇒ −y < −x,

(6.18) 0 < x < y, a > 0 =⇒ 0 < ax < ay,

(6.19) 0 < x < y =⇒ 0 < y−1 < x−1.

Proof. The results (6.16) and (6.18) follow from (6.14); consider, for example, a(y−
x). The result (6.17) follows from (6.13). To prove (6.19), first we see that x > 0
implies x−1 > 0, as follows: if −x−1 > 0, the identity x · (−x−1) = −1 contradicts
(6.14). As for the rest of (6.19), the hypotheses imply xy > 0, and multiplying both
sides of x < y by a = (xy)−1 gives the result, by (6.18).

As in (5.2), define |x| by

(6.20)
|x| = x if x ≥ 0,

−x if x < 0.

It is straightforward to verify

(6.21) |xy| = |x| · |y|, |x + y| ≤ |x|+ |y|.

We now show that R has the Archimedean property.
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Proposition 6.5. Given x ∈ R, there exists k ∈ Z such that

(6.22) k − 1 < x ≤ k.

Proof. It suffices to prove (6.22) assuming x ∈ R+. Otherwise, work with −x. Say
x = [(aj)] where (aj) is a Cauchy sequence of rational numbers. By Proposition
5.2, there exists M ∈ Q such that |aj | ≤ M for all j. By Proposition 4.5, we have
M ≤ ` for some ` ∈ N. Hence the set S = {` ∈ N : ` ≥ x} is nonempty. As in the
proof of Proposition 4.5, taking k to be the smallest element of S gives (6.22).

Proposition 6.6. Given any real ε > 0, there exists n ∈ N such that ε > 1/n.

Proof. Using Proposition 6.5, pick n > 1/ε and apply (6.19). Alternatively, use the
reasoning given above (6.8).

We are now ready to consider sequences of elements of R.

Definition. A sequence (xj) converges to x if and only if, for any n ∈ N, there
exists K(n) such that

(6.23) j ≥ K(n) =⇒ |xj − x| < 1
n

.

In this case, we write xj → x, or x = lim xj .
The sequence (xj) is Cauchy if and only if, for any n ∈ N, there exists K(n)

such that

(6.24) j, k ≥ K(n) =⇒ |xj − xk| < 1
n

.

We note that it is typical to phrase the definition above in terms of picking any
ε > 0 and demanding that, e.g., |xj − x| < ε, for large j. The equivalence of the
two definitions follows from Proposition 6.6.

As in Proposition 5.2, we have that every Cauchy sequence is bounded.
It is clear that, if each xj ∈ Q, then the notion that (xj) is Cauchy given above

coincides with that in §5. If also x ∈ Q, the notion that xj → x also coincides with
that given in §5. Furthermore, if each aj ∈ Q, and x ∈ R, then

(6.25) aj → x ⇐⇒ x = [(aj)].

In fact, given x = [(aj)],

(6.26)
(
j, k ≥ K ⇒ |aj − ak| ≤ 1/n

)
=⇒ (

j ≥ K ⇒ |aj − x| ≤ 1/n
)
.

The proof of Proposition 5.1 extends to the present case, yielding:



25

Proposition 6.7. If xj → x and yj → y, then

(6.27) xj + yj → x + y,

and

(6.28) xjyj → xy.

If furthermore yj 6= 0 for all j and y 6= 0, then

(6.28) xj/yj → x/y.

So far, statements made about R have emphasized similarities of its properties
with corresponding properties of Q. The crucial difference between these two sets
of numbers is given by the following result, known as the completeness property.

Theorem 6.8. If (xj) is a Cauchy sequence of real numbers, then there exists
x ∈ R such that xj → x.

Proof. Take xj = [(aj` : ` ∈ N)] with aj` ∈ Q. Using (6.26), take aj,`(j) = bj ∈ Q
such that

(6.29) |xj − bj | ≤ 2−j .

Then (bj) is Cauchy, since |bj − bk| ≤ |xj − xk|+ 2−j + 2−k. Now, let

(6.30) x = [(bj)].

It follows that

(6.31) |xj − x| ≤ |xj − bj |+ |x− bj | ≤ 2−j + |x− bj |,
and hence xj → x.

If we combine Theorem 6.8 with the argument behind Proposition 5.4, we obtain
the following important result, known as the Bolzano-Weierstrass Theorem.

Theorem 6.9. Any bounded sequence of real numbers has a convergent subse-
quence.

Proof. If |xj | ≤ M, the proof of Proposition 5.4 applies without change to show
that (xj) has a Cauchy subsequence. By Theorem 6.8, that Cauchy subsequence
converges.

Similarly, adding Theorem 6.8 to the argument behind Proposition 5.5 yields:

Proposition 6.10. Any bounded monotone sequence (xj) of real numbers con-
verges.

A related property of R can be described in terms of the notion of the “supre-
mum” of a set.
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Definition. If S ⊂ R, one says that x ∈ R is an upper bound for S provided x ≥ s
for all s ∈ S, and one says

(6.32) x = sup S

provided x is an upper bound for S and further x ≤ x′ whenever x′ is an upper
bound for S.

For some sets, such as S = Z, there is no x ∈ R satisfying (6.32). However, there
is the following result, known as the supremum property.

Proposition 6.11. If S is a nonempty subset of R which has an upper bound, then
there is a real x = sup S.

Proof. We use an argument similar to the one in the proof of Proposition 5.3. Let
x0 be an upper bound for S, pick s0 in S, and consider

I0 = [s0, x0] = {y ∈ R : s0 ≤ y ≤ x0}.

If x0 = s0, then already x0 = sup S. Otherwise, I0 is an interval of nonzero length,
L = x0 − s0. In that case, divide I0 into two equal intervals, having in common
only the midpoint; say I0 = I`

0 ∪ Ir
0 , where Ir

0 lies to the right of I`
0.

Let I1 = Ir
0 if S ∩ Ir

0 6= ∅, and otherwise let I1 = I`
0. Let x1 be the right endpoint

of I1, and pick s1 ∈ S ∩ I1. Note that x1 is also an upper bound for S.
Continue, constructing

Iν ⊂ Iν−1 ⊂ · · · ⊂ I0,

where Iν has length 2−νL, such that the right endpoint xν of Iν satisfies

(6.33) xν ≥ s, ∀ s ∈ S,

and such that S ∩ Iν 6= ∅, so there exist sν ∈ S such that

(6.34) xν − sν ≤ 2−νL.

The sequence (xν) is bounded and monotone (decreasing) so, by Proposition 6.10,
it converges; xν → x. By (6.33), we have x ≥ s for all s ∈ S, and by (6.34) we have
x− sν ≤ 2−νL. Hence x satisfies (6.32).

We end this section with an exercise for the reader. Namely, given a real number
ξ ∈ (0, 1), show it has an infinite decimal expansion, i.e., show there exist bk ∈
{0, 1, . . . , 9} such that

(6.35) ξ =
∞∑

k=1

bk · 10−k.

As a hint, start by breaking [0, 1] into ten subintervals of equal length, and picking
one to which ξ belongs.
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7. Irrational numbers

There are real numbers which are not rational. One, called e, is given by the
limit of the sequence (5.14); in standard notation,

(7.1) e =
∞∑

`=0

1
`!

Proposition 5.8 implies that e is not rational. One can approximate e to high
accuracy. In fact, as a consequence of (5.15), one has

(7.2) e−
n∑

`=0

1
`!
≤ 1

n!
· 1
n

.

For example, one can verify that

(7.3) 120! > 6 · 10198,

and hence

(7.4) e−
120∑

`=0

1
`!

< 10−200.

In less than a second, a personal computer with the right program can perform a
highly accurate approximation to such a sum, yielding

2.7182818284 5904523536 0287471352 6624977572 4709369995
9574966967 6277240766 3035354759 4571382178 5251664274
2746639193 2003059921 8174135966 2904357290 0334295260
5956307381 3232862794 3490763233 8298807531 · · ·

accurate to 190 places after the decimal point.
A number in R \ Q is said to be irrational. We present some more common

examples of irrational numbers, such as
√

2. To begin, one needs to show that
√

2
is a well defined real number. The following general result includes this fact.

Proposition 7.1. Given a ∈ R+, k ∈ N, there is a unique b ∈ R+ such that
bk = a.

Proof. Consider

(7.5) Sa,k = {x ≥ 0 : xk ≤ a}.
Then Sa,k is a nonempty bounded subset of R. Take b = sup Sa,k. One readily
verifies that bk = a.

We write

(7.6) b = a1/k.

Now for a list of irrational numbers:
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Proposition 7.2. Take a ∈ N, k ∈ N. If a1/k is not an integer, then a1/k is
irrational.

Proof. Assume a1/k = m/n, with m,n ∈ N. Then

(7.7) mk = ank.

Using the Fundamental Theorem of Arithmetic, Theorem 3.1, write

(7.8) m = pµ1
1 · · · pµ`

` , n = pν1
1 · · · pν`

` , a = pα1
1 · · · pα`

` ,

with p1 < · · · < p` prime and µj , νj , αj ∈ Ñ = N ∪ {0}. The identity (7.7) implies

(7.9) pkµ1
1 · · · pkµ`

` = pα1+kν1
1 · · · pα`+kν`

` ,

and the uniqueness part of Theorem 3.1 then implies that kµj = αj+kνj , 1 ≤ j ≤ `,
hence

(7.10) αj = kβj , βj ∈ Ñ,

and hence

(7.11) a = bk, b = pβ1
1 · · · pβ`

` ∈ N.

Noting that 12 = 1, 22 = 4, 32 = 9, we have:

Corollary 7.3. The following numbers are irrational:

√
2,
√

3,
√

5,
√

6,
√

7,
√

8.

The real line is thick with both rational numbers and irrational numbers. By
construction, given any x ∈ R, there exists aj ∈ Q such that aj → x. Also, given
any x ∈ R, there exist irrational bj such that bj → x. To see this, just take
aj ∈ Q, aj → x, and set bj = aj + 2−j

√
2.

In a sense that can be made precise, there are more irrational numbers than
rational numbers. Namely, Q is countable, while R is uncountable. See §8 for a
treatment of this.

Perhaps the most intriguing irrational number is π. See [Be] for material on this
number.
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8. Cardinal numbers

We return to the natural numbers considered in §1 and make contact with the
fact that these numbers are used to count objects in collections. Namely, let S be
some set. If S is empty, we say 0 is the number of its elements. If S is not empty,
pick an element out of S and count “1.” If there remain other elements of S, pick
another element and count “2.” Continue. If you pick a final element of S and
count “n,” then you say S has n elements. At least, that is a standard informal
description of counting. We wish to restate this a little more formally, in the setting
where we can apply the Peano axioms.

In order to do this, we consider the following subsets of N. Given n ∈ N, set

(8.1) In = {j ∈ N : j ≤ n}.
While the following is quite obvious, it is worthwhile recording that it is a conse-
quence of the Peano axioms and the material developed in §1.

Lemma 8.1. We have

(8.2) I1 = {1}, In+1 = In ∪ {n + 1}.

Proof. Left to the reader.

Now we propose the following

Definition 8.1. A nonempty set S has n elements if and only if there exists a
bijective map ϕ : S → In.

A reasonable definition of counting should permit one to demonstrate that, if S
has n elements and it also has m elements, then m = n. The key to showing this
from the Peano postulates is the following.

Proposition 8.2. Assume m,n ∈ N. If there exists an injective map ϕ : Im → In,
then m ≤ n.

Proof. Use induction on n. The case n = 1 is clear (by Lemma 8.1). Assume now
that N ≥ 2 and that the result is true for n < N . Then let ϕ : Im → IN be
injective. Two cases arise: either there is an element j ∈ Im such that ϕ(j) = N ,
or not. (Also, there is no loss of generality in assuming at this point that m ≥ 2.)

If there is such a j, define ψ : Im−1 → IN−1 by

ψ(`) = ϕ(`) for ` < j,

ϕ(` + 1) for j ≤ ` < m.

Then ψ is injective, so m− 1 ≤ N − 1, and hence m ≤ N .
On the other hand, if there is no such j, then we already have an injective map

ϕ : Im → IN−1. The induction hypothesis implies m ≤ N−1, which in turn implies
m ≤ N .
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Corollary 8.3. If there exists a bijective map ϕ : Im → In, then m = n.

Proof. We see that m ≤ n and n ≤ m, so Proposition 1.13 applies.

Corollary 8.4. If S is a set, m,n ∈ N, and there exist bijective maps ϕ : S →
Im, ψ : S → In, then m = n.

Proof. Consider ψ ◦ ϕ−1.

Definition 8.2. If either S = ∅ or S has n elements for some n ∈ N, as in
Definiton 8.1, we say S is finite.

The next result implies that any subset of a finite set is finite.

Proposition 8.5. Assume n ∈ N. If S ⊂ In is nonempty, then there exists m ≤ n
and a bijective map ϕ : S → Im.

Proof. Use induction on n. The case n = 1 is clear (by Lemma 8.1). Assume the
result is true for n < N . Then let S ⊂ IN . Two cases arise: either N ∈ S or N /∈ S.

If N ∈ S, consider S′ = S \{N}, so S = S′∪{N} and S′ ⊂ IN−1. The inductive
hypothesis yields a bijective map ψ : S′ → Im (with m ≤ N − 1), and then we
obtain ϕ : S′∪{N} → Im+1, equal to ψ on S′ and sending the element N to m+1.

If N /∈ S, then S ⊂ IN−1, and the inductive hypothesis directly yields the desired
bijective map.

Proposition 8.6. The set N is not finite.

Proof. If there were an n ∈ N and a bijective map ϕ : In → N, then, by restriction,
there would be a bijective map ψ : S → In+1 for some subset S of In, hence by
the results above a bijective map ψ̃ : Im → In+1 for some m ≤ n < n + 1. This
contradicts Corollary 8.3.

The next result says that, in a certain sense, N is a minimal set that is not finite.

Proposition 8.7. If S is not finite, then there exists an injective map Φ : N→ S.

Proof. We aim to show that there exists a family of injective maps ϕn : In → S,
with the property that ϕn

∣∣
Im

= ϕm for all m ≤ n. We establish this by induction
on n. For n = 1, just pick some element of S and call it ϕ1(1). Now assume
this claim is true for all n < N . So we have ϕN−1 : IN−1 → S injective, but not
surjective (since we assume S is not finite). Pick x ∈ S not in the range of ϕN−1.
Then define ϕN : IN → S so that

(8.3)
ϕN (j) = ϕN−1(j), j ≤ N − 1,

ϕN (N) = x.

Having the family ϕn, we define Φ : N→ S by Φ(j) = ϕn(j) for any n ≥ j.

Two sets S and T are said to have the same cardinality if there exists a bijective
map between them; we write Card(S) = Card(T ). If there exists an injective map
ϕ : S → T , we write Card(S) ≤ Card(T ). The following result, known as the
Schroeder-Bernstein theorem, implies that Card(S) = Card(T ) whenever one has
both Card(S) ≤ Card(T ) and Card(T ) ≤ Card(S).
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Theorem 8.8. Let S and T be sets. Suppose there exist injective maps ϕ : S → T
and ψ : T → S. Then there exists a bijective map Φ : S → T .

Proof. Let us say an element x ∈ T has a parent y ∈ S if ϕ(y) = x. Similarly
there is a notion of a parent of an element of S. Iterating this gives a sequence of
“ancestors” of any element of S or T . For any element of S or T , there are three
possibilities:

a) The set of ancestors never terminates.
b) The set of ancestors terminates at an element of S.
c) The set of ancestors terminates at an element of T .

We denote by Sa, Ta the elements of S, T , respectively for which case a) holds.
Similarly we have Sb, Tb and Sc, Tc. We have disjoint unions

S = Sa ∪ Sb ∪ Sc, T = Ta ∪ Tb ∪ Tc.

Now note that
ϕ : Sa → Ta, ϕ : Sb → Tb, ψ : Tc → Sc

are all bijective. Thus we can set Φ equal to ϕ on Sa ∪ Sb and equal to ψ−1 on Sc,
to get a desired bijection.

The terminology above suggests regarding Card(S) as an object (some sort of
number). Indeed, if S is finite we set Card(S) = n if S has n elements (as in
Definition 8.1). A set that is not finite is said to be infinite. We can also have a
notion of cardinality of infinite sets. A standard notation for the cardinality of N is

(8.4) Card(N) = ℵ0.

Here are some other sets with the same cardinality:

Proposition 8.9. We have

(8.5) Card(Z) = Card(N× N) = Card(Q) = ℵ0.

Proof. We can define a bijection of N onto Z by ordering elements of Z as follows:

0, 1,−1, 2,−2, 3,−3, · · · .

We can define a bijection of N and N×N by ordering elements of N×N as follows:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), · · · .

We leave it to the reader to produce a similar ordering of Q.

An infinite set that can be mapped bijectively onto N is called countably infinite.
A set that is either finite or countably infinite is called countable. The following
result is a natural extension of Proposition 8.5.
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Proposition 8.10. If X is a countable set and S ⊂ X, then S is countable.

Proof. If X is finite, then Proposition 8.5 applies. Otherwise, we can assume X =
N, and we are looking at S ⊂ N, so there is an injective map ϕ : S → N. If S is
finite, there is no problem. Otherwise, by Proposition 8.7, there is an injective map
ψ : N → S, and then Theorem 8.8 implies the existence of a bijection between S
and N.

There are sets that are not countable; they are said to be uncountable.

Proposition 8.11. The set R of real numbers is uncountable.

Proof. We may as well show that (0, 1) = {x ∈ R : 0 < x < 1} is uncountable. If
it were countable, there would be a bijective map ϕ : N→ (0, 1). Expand the real
number ϕ(j) in its infinite decimal expansion:

(8.6) ϕ(j) =
∞∑

k=1

ajk · 10−k, ajk ∈ {0, 1, . . . 9}.

Now set

(8.7)
bk = 2 if akk 6= 2,

3 if akk = 2,

and consider

(8.8) ξ =
∞∑

k=1

bk · 10−k, ξ ∈ (0, 1).

It is seen that ξ is not equal to ϕ(j) for any j ∈ N, contradicting the hypothesis
that ϕ : N→ (0, 1) is onto.

A common notation for the cardinality of R is

(8.9) Card(R) = c.

We leave it as an exercise to the reader to show that

(8.10) Card(R× R) = c.

Further development of the theory of cardinal numbers requires a formalization
of the notions of set theory. In these notes we have used set theoretical notions
rather informally. Our use of such notions has gotten somewhat heavier in this last
section. In particular, in the proof of Proposition 8.7, the innocent looking use of
the phrase “pick x ∈ S . . . ” actually assumes the truth of a weak version of the
Axiom of Choice. For an introduction to the axiomatic treatment of set theory we
refer to [Dev], and at this point bring our own introduction to the study of numbers
to an end.
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