
Solutions Exam 1 — Oct. 7, 2017

1. Consider the following four functions. Determine which extend (i.e., can be analytically continued)
to an entire function (i.e., a holomorphic function on the entire complex plane) and which cannot.
Remember to justify your answers.

(a) (10 points) f1(x + iy) = u(x, y) + iv(x, y) where u(x, y) = x2 + y2 − 1 and v(x, y) = 2xy. Hint:
Consider the Cauchy-Riemann equations.

Observe first that f1 is defined everywhere in C. If it were entire, then it would have to satisfy
the Cauchy-Riemann equations. That is,

∂

∂z̄
f1 = 0 ⇐⇒ ∂u

∂x
=
∂u

∂x
and

∂u

∂y
= −∂v

∂x
.

We have for the given function that ∂u
∂x = 2x = ∂u

∂x so the first equation is satisfied. However,
∂u
∂y = 2y 6= −2x = − ∂v

∂x . As such, f1 cannot be holomorphic at any point z 6= 0 and so is not
entire.

(b) (10 points) f2(z) = z2 − 1.

We have that for every z, that

f ′(z) = lim
h→0

f2(z + h)− f(z)

h
= lim

h→0

(z + h)2 − z2

h
= lim

h→0

2zh+ h2

h
= lim

h→0
(2z + h) = 2z

Hence, the complex derivative exists at every point z ∈ C. That is, the function is holomorphic
at every point and so is entire.
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(c) (10 points) f3(z) =
∑∞

n=1 n
−n(z − 2)n

This power series has coefficients an = n−n. We compute that limn→∞ |an|1/n = limn→∞ n
−1 =

0. Hence, by Hadamard’s formula, the radius of convergence of this series is R = ∞. It fol-
lows that this function is holomorphic in the entire complex plane and hence is entire. This
is because power series are holomorphic on their entire disks of convergence.

(d) (10 points) f4(z) =
∑∞

n=1 n
2zn.

This power series has coefficients bn = n2. We compute that limn→∞ |bn|1/n = limn→∞ n
2/n =

1. As such the power series has radius of convergence 1. This means that f4 is holomorphic in
the disk |z| < 1. However, as the power series diverges for |z| > 1, the function f4 cannot be
extended to an entire function. This is because if there was a a F4 that was entire and that
extended f4, then the Cauchy inequalities would imply that there was would be a power series∑∞

n=0 cnz
n with infinity radius of convergence so that F4(z) =

∑∞
n=0 cnz

n. As this agrees
with f4 on |z| < 1, this means that cn = bn. This yields a contradiction with what we already
computed and so we conclude that there can be no such F4.
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2. (a) (20 points) Use a contour integral to carry out the the following computation:∫ ∞
−∞

cosx

x2 + 1
dx =

π

e
.

Hint: Use as contours the semi-circles of radius R with keyhole at z = i and that if z = x + iy
and y ≥ 0, then | exp(iz)| = exp(−y) ≤ 1.

Following the hint, we consider the semicircle made up of LR which is the segment [−R,R] on the
real axis and C+

R , the upper half of ∂DR. We turn this into a keyhole, joining the small circle
Cε = ∂Dε(i) by two segments parallel to the imaginary axis connecting the small circle to LR.
Denote this keyhole contour by Γδ,ε,R (I suggest you draw this to understand the argument).

Let f(z) = eiz

z2+1
we observe that∫ ∞

−∞

cosx

x2 + 1
dx = lim

R→∞
Re

∫
LR

f(z)dz.

As f is holomorphic when z 6= ±i, i.e., in the interior of Γδ,ε,R, and so by Cauchy’s theorem,

0 =

∫
Γδ,ε,R

f(z)dz.

As the two line segments cancel out when δ → 0, by taking δ → 0 we obtain

0 = lim
δ→0

∫
Γδ,ε,R

f(z)dz =

∫
LR

f(z)dz +

∫
C+
R

f(z)dz +

∫
Cε

f(z)dz.

Observe that, when R > 4∣∣∣∣∣
∫
C+
R

f(z)dz

∣∣∣∣∣ ≤ sup
C+
R

|f(z)|Len(C+
R ) ≤ 2πR

R2
=

2π

R

where here we used the hint and the fact that on C+
R one has z = x+ iy with y ≥ 0. Indeed,

|f(z)| =
∣∣∣∣ eiz

z2 + 1

∣∣∣∣ =
|eiz|
|z2 + 1|

≤ 2

R2

where we used that when R > 4

|z2+1| = |x+1+iy|2 = (x+1)2+y2 = R2+2x+1 =
1

2
R2+

1

2
R2+2x+1 >

1

2
R2+2R+2x+1 >

1

2
R2.

One checks (using a power series for instance) that near z = i,

f(z) = − 1

2ei(z − i)
+ F (z)

where F (z) is holomorphic near z = i. Hence, by Cauchy’s theorem when ε is small,∫
Cε

f(z)dz =

∫
Cε

− 1

2ei(z − i)
dz = − 1

2ei

∫
Cε

1

z−)
dz = −π

e
.

Thus, ∫
LR

f(z)dz =
π

e
+O(R−1).

Verifying the claim.
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3. (a) (10 points) Compute
∫
∂D1(0) z̄dz where ∂D1(0) is the unit circle with positive orientation. Use

this to explain why there is no holomorphic function f : D2(0)→ C with f(z) = z̄ for z ∈ ∂D1(0).

Using the parametrization z(t) = eit we compute directly that∫
∂D1(0)

z̄dz =

∫ 2π

0
z̄(t)z′(t)dt =

∫ 2π

0
e−itieitdt = i

∫ 2π

0
dt = 2πi.

As D̄1(0) ⊂ D2(0), it there was such a holomorphic f , then Cauchy’s theorem would give

2πi =

∫
∂D1(0)

z̄dz =

∫
∂D1(0)

f(z)dz = 0

which is clearly absurd and means there can be no such f .
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(b) (10 points) Show that if g : D2(0)\ {0} → C is holomorphic and g(z) = z̄ for z ∈ ∂D1(0), then
g(z) = 1

z . Why does this not contradict part a)?

We observe that that z ∈ ∂D1(0) if and only if 1 = |z|2 = zz̄. As g(z) = 1/z is holomorphic
on D2(0)\ {0} and has the desired behavior of ∂D1(0). If h(z) was some other function
holomorphic on D2(0)\ {0} with h(z) = z̄ on ∂D1(0), then H(z) = g(z)−h(z) is holomorphic
on D2(0)\ {0} and vanishes on ∂D1(0). Notice any point in ∂D1(0) is an accumulation points
of the zeros of H and so, as D2(0)\ {0} is connected, H(z) vanishes identically.

Finally, this does not contradict part a) as D̄1(0) is not a subset of D2(0)\ {0} and so Cauchy’s
theorem does not apply.
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4. (20 points) Use the Cauchy inequalities to show that if f is an entire function that satisfies

|f(z)| ≤ C|z| log(1 + |z|),

for all z ∈ C, then f(z) = 0 for all z ∈ C. Hint: Determine limr→∞
log(1+r)

r and limr→0+
log(1+r)

r and
use the first limit to show f(z) = az + b.

We first observe that by L’Hopital’s rule,

lim
r→∞

log(1 + r)

r
= lim

r→∞

1

r + 1
= 0.

Similarly, as log(1) = 0, we can use L’Hopital’s rule, to see that

lim
r→0+

log(1 + r)

r
= lim

r→0+

1

r + 1
= 1.

As f is entire, it follows from the Cauchy inequalities, that for all r > 0

|f (n)(0)| ≤ n!

rn
sup

z∈∂Dr(0)
|f(z)|

Using the estimate,

|f (n)(0)| ≤ Cn!

rn−1
log(r + 1).

When n ≥ 2 this yields

|f (n)(0)| ≤ Cn!

rn−2

log(r + 1)

r
.

As Cn!
rn−2 is bounded as r →∞ and log(r+1)

r → 0 as r →∞ we conclude that f (n)(0) = 0 for n ≥ 2.
Hence, f(z) = a+ bz (to see this consider the power series of f centered at z = 0.)

However, |f(0)| ≤ |0| so a = 0 and

|f ′(0)| =
∣∣∣∣ limh→0

f(h)− f(0)

h

∣∣∣∣ = lim
h→0

|f(h)|
|h|

.

Hence, using the estimate

|f ′(0)| ≤ lim
h→0

C|h| log(|h|+ 1)

|h|
= lim

r→0+

Cr log(|r|+ 1)

r
= C lim

r→0+
r lim
r→0+

log(|r|+ 1)

r
= 0.

Hence, f ′(0) = b = 0 and so f(z) = 0 for all z.


