Solutions Exam 2 - Dec. 7, 2017

1. Suppose that $f: D_{1}^{*}(0) \rightarrow \mathbb{C}$ is a holomorphic function satisfying $|f(z)| \leq C|z|^{-3 / 2}$. Here $D_{1}^{*}(z)=$ $\{z \in \mathbb{C}: 0<|z|<1\}$ and $C>1$.
(a) (15 points) Show that f has either a simple pole at $z=0$ or a removable singularity. Hint: Consider $h(z)=z^{2} f(z)$.

Let $h(z)=z^{2} f(z)$. We have $|h(z)|=\left|z^{2}\right||f(z)| \leq C|z|^{1 / 2} \leq C$ on D_{1}^{*}. This means h is bounded and holomorphic in D_{1}^{*}. Hence, by the Riemann removable singularities theorem, 0 is a removable singularity for h and so h extends to a holomorphic function $H(z)$ on all of D_{1}. Notice, that $|H(0)|=\lim _{z \rightarrow 0}|H(z)| \leq \lim _{z \rightarrow 0} C|z|^{1 / 2}=0$ and so H has a zero at $z=0$. In particular, we can write $H(z)=z G(z)$ where G is holomorphic in D_{1}. Clearly, $f(z)=z^{-1} G(z)$ and so either f has a simple pole at $z=0$ (if $G(0) \neq 0$) or f has a removable singularity at $z=0($ if $G(0)=0)$.
(b) (5 points) Show that if, in addition, $|f(z)| \geq|z|^{-1 / 2}$, then f has a simple pole at $z=0$.

The lower bound ensures that $\lim _{z \rightarrow 0}|f(z)| \geq \lim _{z \rightarrow 0}|z|^{-1 / 2}=\infty$ and so f has a pole at $z=0$. By the previous part this pole is a simple pole.
2. Compute the following contour integrals.
(a) (10 points) $\int_{\partial D_{1}(0)} \frac{\frac{e^{z^{2}} \cos (z)}{z^{2}} d z}{}$

As the integrand is meromorphic in D_{1}, the residue theorem gives

$$
\int_{\partial D_{1}(0)} \frac{e^{z^{2}} \cos (z)}{z^{2}} d z=2 \pi i \operatorname{Res}_{z=0} \frac{e^{z^{2}} \cos (z)}{z^{2}}=0 .
$$

In order to get the last equality we note that, $\frac{z^{z^{2}} \cos (z)}{z^{2}}$ has a pole of order 2 at $z=0$. Hence, in order to compute the residue we use the first few terms in the Taylor expansion

$$
e^{z^{2}}=1+z^{2}+O\left(z^{4}\right)
$$

and

$$
\cos (z)=1+\frac{z^{2}}{2}+O\left(z^{4}\right)
$$

to see that

$$
\frac{e^{z^{2}} \cos (z)}{z^{2}}=\frac{1}{z^{2}}+\frac{3}{2}+O\left(z^{2}\right)
$$

and so the residue at $z=0$ is zero.
One could also use the residue formula for higher order poles

$$
\operatorname{Res}_{z=0} \frac{e^{z^{2}} \cos (z)}{z^{2}}=\frac{1}{1!} \lim _{z \rightarrow 0} \frac{d}{d z} z^{2}\left(\frac{e^{z^{2}} \cos (z)}{z^{2}}\right)=\lim _{z \rightarrow 0}\left(2 z e^{z^{2}}-\sin (z)\right)=0 .
$$

(b) (10 points) Let f be holomorphic on $D_{3}(0)$ and suppose $f(1)=f^{\prime}(1)=-1, \int_{\partial D_{2}(0)} \frac{f(\zeta)}{(\zeta-1)^{2}} d \zeta$.

As f is holomorphic in D_{3}, the generalized Cauchy integral formula gives

$$
-1=f^{\prime}(1)=\frac{1!}{2 \pi i} \int_{\partial D_{2}(0)} \frac{f(\zeta)}{(\zeta-1)^{2}} d \zeta .
$$

Hence,

$$
\int_{\partial D_{2}(0)} \frac{f(\zeta)}{(\zeta-1)^{2}} d \zeta=-2 \pi i
$$

One could also use the residue theorem.
(c) (10 points) Let f be holomorphic on $D_{3}(0)$ and $f(1)=2$ and $f(-1)=1$. Compute $\int_{\partial D_{2}(0)} \frac{f(z)}{z^{2}-1} d z$.

We note that $z^{2}-1=(z-1)(z+1)$ and so $\frac{f(z)}{z^{2}-1}$ has simple poles at $z=1$ and $z=-1$. Hence, the residue theorem implies that

$$
\int_{\partial D_{2}(0)} \frac{f(z)}{z^{2}-1} d z=2 \pi i \operatorname{Res}_{z=1} \frac{f(z)}{z^{2}-1}+2 \pi i \operatorname{Res}_{z=-1} \frac{f(z)}{z^{2}-1}
$$

As the poles are simple we have

$$
\operatorname{Res}_{z=1} \frac{f(z)}{z^{2}-1}=\lim _{z \rightarrow 1}(z-1) \frac{f(z)}{z^{2}-1}=\lim _{z \rightarrow 1} \frac{f(z)}{z+1}=\frac{f(1)}{1+1}=1
$$

and

$$
\operatorname{Res}_{z=-1} \frac{f(z)}{z^{2}-1}=\lim _{z \rightarrow-1}(z+1) \frac{f(z)}{z^{2}-1}=\lim _{z \rightarrow-1} \frac{f(z)}{z-1}=\frac{f(-1)}{-1-1}=-\frac{1}{2}
$$

Hence,

$$
\int_{\partial D_{2}(0)} \frac{f(z)}{z^{2}-1} d z=\pi i .
$$

3. Explain why there is no holomorphic function with the given domain and properties.
(a) (10 points) A $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(5)=0$ and $f\left(\frac{1}{n}\right)=1$ for all $n \in \mathbb{Z}, n \geq 1$. Hint: what is happening at $z=0$.

We observe that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and hence 0 is a point of accumulation of the sequence $\left\{\frac{1}{n}\right\}_{n \geq 1}$. This means that f must identically be equal to 1 by the analytic continuation property of holomorphic functions. This is inconsistent with $f(5)=0$ and so there can be no such holomorphic f.
(b) (10 points) A $f: D_{2}(0) \rightarrow \mathbb{C}$ with $f(0)=-2$ and $|f(z)| \leq 1$ on $\partial D_{1}(0)$

As f is holomorphic on D_{2} it is continuous on \bar{D}_{1}. Hence, by the maximum modulus principle one should have

$$
2=|f(0)| \leq \max _{\partial D_{1}}|f(z)| \leq 1
$$

As this is absurd, there can be no such holomorphic f. One could also see this using the Cauchy integral formula.
(c) (10 points) A $f: D_{1}^{*}(0) \rightarrow \mathbb{C}$ with $1 \leq|f(z)|$ for all $z \in D_{1}^{*}(0)$ and so that $\lim _{z \rightarrow 0}|f(z)|$ does not exist. Here $D_{1}^{*}(0)=\{z \in \mathbb{C}: 0<|z|<1\}$.

By hypotheses, $f(z)$ never vanishes on D_{1}^{*} and so $g(z)=\frac{1}{f(z)}$ is holomorphic on D_{1}^{*}. Notice that

$$
|g(z)|=\frac{1}{|f(z)|} \leq 1
$$

Hence, g is bounded and so, by the Riemann removable singularity theorem, g extends to a holomorphic function of D_{1}. As such $\lim _{z \rightarrow 0}|g(z)|=|g(0)|$ exists. This means $\lim _{z \rightarrow 0}|f(z)|$ also exists (though could be ∞ if $g(0)=0$) and so there is no such f.
Alternatively, one could use that $\lim _{z \rightarrow 0}|f(z)|$ does not exist only when f has an essential singularity at $z=0$. The hypotheses that $1 \leq|f(z)|$ contradicts the Casorati-Weierstrass theorem and so shows that there can be no such f.
4. Show (by construction) that there is a holomorphic function f with the given properties.
(a) (10 points) A simply connected domain Ω and an $f: \Omega \rightarrow \mathbb{C}$ so that for all $z \in \Omega,(f(z))^{2}=z$ and $f(1)=1$ while $f(4)=-2$. Hint: Draw the right domain and use the corresponding logarithm.

Pick a simply connected domain Ω with the property that $1 \in \Omega, 4 \in \Omega, 0 \notin \Omega$ and Ω "winds" clockwise one around 0 . (e.g., consider a small neighborhood of the curve $t \mapsto(t+1)^{2} e^{2 \pi i t}$, $t \in[0,1])$. For such $\Omega, \log _{\Omega}(1)=0$, while $\log _{\Omega}(4)=\log 4+2 \pi i=2 \log 2+2 \pi i$.
Letting $f(z)=e^{\frac{1}{2} \log _{\Omega}(z)}$ one has that f is holomorphic on Ω and

$$
(f(z))^{2}=\left(e^{\frac{1}{2} \log _{\Omega}(z)}\right)^{2}=e^{\log _{\Omega}(z)}=z
$$

Moreover, $f(1)=e^{\frac{1}{2} \log _{\Omega}(1)}=e^{0}=1$ while $f(4)=e^{\frac{1}{2} \log _{\Omega}(4)}=e^{\log 2+\pi i}=-2$. Verifying the claim.
(b) (10 points) A $f: \mathbb{C} \rightarrow \mathbb{C}$ with simple zeros at $z=2^{n}$ for all $n \in \mathbb{Z}, n \geq 0$.

Consider the infinite produce

$$
f(z)=\Pi_{n=0}^{\infty}\left(1-\frac{z}{2^{n}}\right) .
$$

We note that this product converges uniformly on any D_{R} as on this disk

$$
\sum_{n=0}^{\infty}\left|\frac{z}{2^{n}}\right|=|z| \sum_{n=0}^{\infty} \frac{1}{2^{n}} \leq R \sum_{n=0}^{\infty} \frac{1}{2^{n}}<\infty .
$$

Moreover, as this sum is finite this product only has simple zeros at $z=2^{n}$ when $n=$ $0,1, \ldots, \infty$. As such the product gives an entire function with simple zeros only at $z=2^{n}$
Alternatively, one can observe that a function that has simple zeros at (say) every integer numbers also has simple zeros at each 2^{n}. For instance, $f(z)=\sin (\pi z)$ is an example.

