
Solutions Exam 2 — Dec. 7, 2017

1. Suppose that f : D∗1(0) → C is a holomorphic function satisfying |f(z)| ≤ C|z|−3/2. Here D∗1(z) =
{z ∈ C : 0 < |z| < 1} and C > 1.

(a) (15 points) Show that f has either a simple pole at z = 0 or a removable singularity. Hint:
Consider h(z) = z2f(z).

Let h(z) = z2f(z). We have |h(z)| = |z2||f(z)| ≤ C|z|1/2 ≤ C on D∗1. This means h is
bounded and holomorphic in D∗1. Hence, by the Riemann removable singularities theorem,
0 is a removable singularity for h and so h extends to a holomorphic function H(z) on all
of D1. Notice, that |H(0)| = limz→0 |H(z)| ≤ limz→0C|z|1/2 = 0 and so H has a zero at
z = 0. In particular, we can write H(z) = zG(z) where G is holomorphic in D1. Clearly,
f(z) = z−1G(z) and so either f has a simple pole at z = 0 (if G(0) 6= 0) or f has a removable
singularity at z = 0 (if G(0) = 0).

(b) (5 points) Show that if, in addition, |f(z)| ≥ |z|−1/2, then f has a simple pole at z = 0.

The lower bound ensures that limz→0 |f(z)| ≥ limz→0 |z|−1/2 = ∞ and so f has a pole at
z = 0. By the previous part this pole is a simple pole.
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2. Compute the following contour integrals.

(a) (10 points)
∫
∂D1(0)

ez
2

cos(z)
z2 dz

As the integrand is meromorphic in D1, the residue theorem gives∫
∂D1(0)

ez
2

cos(z)

z2
dz = 2πiResz=0

ez
2

cos(z)

z2
= 0.

In order to get the last equality we note that, ez
2

cos(z)
z2 has a pole of order 2 at z = 0. Hence,

in order to compute the residue we use the first few terms in the Taylor expansion

ez
2

= 1 + z2 +O(z4)

and

cos(z) = 1 +
z2

2
+O(z4)

to see that
ez

2
cos(z)

z2
=

1

z2
+

3

2
+O(z2)

and so the residue at z = 0 is zero.

One could also use the residue formula for higher order poles

Resz=0
ez

2
cos(z)

z2
=

1

1!
lim
z→0

d

dz
z2

(
ez

2
cos(z)

z2

)
= lim

z→0

(
2zez

2 − sin(z)
)

= 0.

(b) (10 points) Let f be holomorphic on D3(0) and suppose f(1) = f ′(1) = −1,
∫
∂D2(0)

f(ζ)
(ζ−1)2dζ.

As f is holomorphic in D3, the generalized Cauchy integral formula gives

−1 = f ′(1) =
1!

2πi

∫
∂D2(0)

f(ζ)

(ζ − 1)2
dζ.

Hence, ∫
∂D2(0)

f(ζ)

(ζ − 1)2
dζ = −2πi.

One could also use the residue theorem.
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(c) (10 points) Let f be holomorphic on D3(0) and f(1) = 2 and f(−1) = 1. Compute
∫
∂D2(0)

f(z)
z2−1

dz.

We note that z2 − 1 = (z − 1)(z + 1) and so f(z)
z2−1

has simple poles at z = 1 and z = −1.
Hence, the residue theorem implies that∫

∂D2(0)

f(z)

z2 − 1
dz = 2πiResz=1

f(z)

z2 − 1
+ 2πiResz=−1

f(z)

z2 − 1
.

As the poles are simple we have

Resz=1
f(z)

z2 − 1
= lim

z→1
(z − 1)

f(z)

z2 − 1
= lim

z→1

f(z)

z + 1
=

f(1)

1 + 1
= 1

and

Resz=−1
f(z)

z2 − 1
= lim

z→−1
(z + 1)

f(z)

z2 − 1
= lim

z→−1

f(z)

z − 1
=

f(−1)

−1− 1
= −1

2
.

Hence, ∫
∂D2(0)

f(z)

z2 − 1
dz = πi.
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3. Explain why there is no holomorphic function with the given domain and properties.

(a) (10 points) A f : C → C with f(5) = 0 and f
(

1
n

)
= 1 for all n ∈ Z, n ≥ 1. Hint: what is

happening at z = 0.

We observe that limn→∞
1
n = 0 and hence 0 is a point of accumulation of the sequence

{
1
n

}
n≥1

.
This means that f must identically be equal to 1 by the analytic continuation property of
holomorphic functions. This is inconsistent with f(5) = 0 and so there can be no such
holomorphic f .

(b) (10 points) A f : D2(0)→ C with f(0) = −2 and |f(z)| ≤ 1 on ∂D1(0)

As f is holomorphic on D2 it is continuous on D̄1. Hence, by the maximum modulus principle
one should have

2 = |f(0)| ≤ max
∂D1

|f(z)| ≤ 1.

As this is absurd, there can be no such holomorphic f . One could also see this using the
Cauchy integral formula.
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(c) (10 points) A f : D∗1(0)→ C with 1 ≤ |f(z)| for all z ∈ D∗1(0) and so that limz→0 |f(z)| does not
exist. Here D∗1(0) = {z ∈ C : 0 < |z| < 1}.

By hypotheses, f(z) never vanishes on D∗1 and so g(z) = 1
f(z) is holomorphic on D∗1. Notice

that

|g(z)| = 1

|f(z)|
≤ 1

Hence, g is bounded and so, by the Riemann removable singularity theorem, g extends to a
holomorphic function of D1. As such limz→0 |g(z)| = |g(0)| exists. This means limz→0 |f(z)|
also exists (though could be ∞ if g(0) = 0) and so there is no such f .

Alternatively, one could use that limz→0 |f(z)| does not exist only when f has an essential
singularity at z = 0. The hypotheses that 1 ≤ |f(z)| contradicts the Casorati-Weierstrass
theorem and so shows that there can be no such f .
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4. Show (by construction) that there is a holomorphic function f with the given properties.

(a) (10 points) A simply connected domain Ω and an f : Ω→ C so that for all z ∈ Ω, (f(z))2 = z and
f(1) = 1 while f(4) = −2. Hint: Draw the right domain and use the corresponding logarithm.

Pick a simply connected domain Ω with the property that 1 ∈ Ω, 4 ∈ Ω, 0 6∈ Ω and Ω “winds”
clockwise one around 0. (e.g., consider a small neighborhood of the curve t 7→ (t + 1)2e2πit,
t ∈ [0, 1]). For such Ω, logΩ(1) = 0, while logΩ(4) = log 4 + 2πi = 2 log 2 + 2πi.

Letting f(z) = e
1
2

logΩ(z) one has that f is holomorphic on Ω and

(f(z))2 =
(
e

1
2

logΩ(z)
)2

= elogΩ(z) = z.

Moreover, f(1) = e
1
2

logΩ(1) = e0 = 1 while f(4) = e
1
2

logΩ(4) = elog 2+πi = −2. Verifying the
claim.

(b) (10 points) A f : C→ C with simple zeros at z = 2n for all n ∈ Z, n ≥ 0.

Consider the infinite produce

f(z) = Π∞n=0

(
1− z

2n

)
.

We note that this product converges uniformly on any DR as on this disk

∞∑
n=0

∣∣∣ z
2n

∣∣∣ = |z|
∞∑
n=0

1

2n
≤ R

∞∑
n=0

1

2n
<∞.

Moreover, as this sum is finite this product only has simple zeros at z = 2n when n =
0, 1, . . . ,∞. As such the product gives an entire function with simple zeros only at z = 2n

Alternatively, one can observe that a function that has simple zeros at (say) every integer
numbers also has simple zeros at each 2n. For instance, f(z) = sin(πz) is an example.


