Mathematic 407, Fall 2017: Assignment \#4

Due: Thursday, October 5th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem \#1. Show that if f is an entire function (i.e. holomorphic on all of \mathbb{C}) and satisfies $|f(z)| \leq$ $C\left(1+|z|^{n}\right)$ for some $C>0$ and $n \geq 0$, then f is a polynomial of degree at most n. Hint: What do the Cauchy inequalities tell you about $\left.f^{(} n+1\right)(z)$?

Problem \#2. Chapter 2: Exercise 11.
Problem \#3. Chapter 2: Exercise 12.
Problem \#4. Chapter 2: Exercise 15.

Problem \#5. Chapter 2: Problem 1 a). (Note: Problems are listed after Exercises in the textbook).

