Solutions Exam 1 - Mar. 14, 2018

1. (15 points) Let $f:[0,4] \rightarrow \mathbb{R}$ increase from -1 to 0 on $[0,1]$ and decrease from 1 to -1 on (1,4$]$ (i.e., $f(0)=-1, f(1)=0, \lim _{x \rightarrow 1^{+}} f(x)=1, f(4)=-1$ and f is monotone on $[0,1]$ and $\left.(1,4]\right)$. Show that f is a BV function and compute its total variation $V_{0}^{4} f$.

First observe that, as $\lim _{x \rightarrow 1^{+}} f(x)=1$, for any $\epsilon>0$ there is a $\delta>0$ so if $x \in(1,1+\delta)$, then $f(x) \geq 1-\epsilon>0$. Now let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be any partition of $[0,4]$. Up to taking a a finer partition, $P \epsilon$ one may assume that there are is an index $n>i_{1}>0$ so $x_{i_{1}}=1$ and so $1 \geq f\left(x_{i_{1}+1}\right) \geq 1-\epsilon>0$. Notice that f is increasing on $\left[x_{0}, x_{i_{1}}\right]$ and is decreasing on $\left(x_{i_{1}}, 1\right]$. Hence,

$$
\begin{aligned}
V(f, P) \leq V\left(f, P_{\epsilon}\right) & =\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \\
& =\sum_{i=1}^{i_{1}}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)+\left|f\left(x_{i_{1}+1}\right)-f\left(x_{i}\right)\right|-\sum_{i=i_{1}+2}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right.
\end{aligned}
$$

As two of these sums are telescoping one has

$$
V\left(f, P_{\epsilon}\right)=f\left(x_{i_{1}}\right)-f\left(x_{0}\right)+f\left(x_{i_{1}}+1\right)-f\left(x_{n}\right)+\left|f\left(x_{i_{1}}+1\right)-f\left(x_{i}\right)\right| .
$$

As $f\left(x_{i_{1}}\right)=0$ and $1 \geq f\left(x_{i_{1}+1}\right) \geq 1-\epsilon$ one has

$$
V\left(f, P_{\epsilon}\right)=f\left(x_{i_{1}}\right)-f\left(x_{0}\right)+f\left(x_{i_{1}}+1\right)-f\left(x_{n}\right)+f\left(x_{i_{1}}+1\right)-f\left(x_{i}\right)
$$

and hence

$$
4-2 \epsilon \leq V\left(f, P_{\epsilon}\right) \leq 4 .
$$

This implies that

$$
V_{0}^{4} f=\sup \{V(f, P): P\}=4
$$

and so f is BV .
2. (a) (10 points) Give an example of a bounded function $f:[0,1] \rightarrow \mathbb{R}$ that is not Riemann integrable on $[0,1]$, i.e. so $f \notin \mathcal{R}[0,1]$. Remember to justify your answer.

The function

$$
f(x)=\left\{\begin{array}{cc}
1 & x \in[0,1] \cap \mathbb{Q} \\
0 & x \in[0,1] \backslash \mathbb{Q}
\end{array}\right\}
$$

is bounded, but is not Riemann integrable. This is because for any partition P of $[0,1]$ one has $U(f, P)=1$ while $L(f, P)=0$.
(b) (10 points) Let $\alpha:[-1,1] \rightarrow \mathbb{R}$ be given by

$$
\alpha(x)=\left\{\begin{array}{cc}
-1 & x \in[-1,0] \\
1 & x \in(0,1] .
\end{array}\right.
$$

Give an example of a bounded function $f:[-1,1] \rightarrow \mathbb{R}$ with a finite number of discontinuities that is not Riemann-Stieltjes integrable with respect to α, i.e., so $f \notin \mathcal{R}_{\alpha}[-1,1]$. Remember to justify your answer.

Let $f(x)=\alpha(x)$. Clearly f has exactly one discontinuity at $x=0$, but $f \notin \mathcal{R}_{\alpha}[-1,1]$. The reason for this is if P is a partition of $[-1,1]$ which contains 0 one has $U_{\alpha}(f, P)=2$ while $L_{\alpha}(f, P)=-2$.
(c) (15 points) Show that if $f:[-1,1] \rightarrow \mathbb{R}$ is continuous, then is Riemann-Stieltjes integrable with respect to the α from part b), i.e., $f \in \mathcal{R}_{\alpha}[-1,1]$. Compute $\int_{-1}^{1} f d \alpha$.

Given $\epsilon>0$ pick $\delta>0$ so for $|x| \leq \delta,|f(x)-f(0)| \leq \frac{\epsilon}{2}$. Pick any partition P of $[-1,1]$. Up to passing to a finer partition, P_{ϵ}, one may assume that $0=x_{i_{1}} \in P_{\epsilon}$ and and $x_{i_{1}}<x_{i_{1}+1}<\delta$. Notice that for $i=i_{1}$ one has $\alpha\left(x_{i+1}\right)-\alpha\left(x_{i}\right)=2$, while for $i \neq i_{1}, \alpha\left(x_{i+1}\right)-\alpha\left(x_{i}\right)=0$.
On $\left[x_{i_{1}}, x_{i_{1}+1}\right]$ one has

$$
f(0)-\epsilon / 2 \leq \inf _{\left[x_{i_{1}}, x_{i_{1}+1}\right]} f(x) \leq \sup _{\left[x_{i_{1}}, x_{i_{1}+1}\right]} f(x) \leq f(0)+\epsilon / 2 .
$$

Hence,

$$
2 f(0)+\epsilon \geq U_{\alpha}\left(f, P_{\epsilon}\right) \geq L_{\alpha}\left(f, P_{\epsilon}\right) \geq 2 f(0)-\epsilon
$$

As $\epsilon>0$ is arbitrary, and α is increasing this means that

$$
2 f(0) \geq \inf _{P} U_{\alpha}(f, P) \geq \sup _{P} L_{\alpha}(f, P) \geq 2 f(0) .
$$

And so one has equality throughout. This implies $f \in \mathcal{R}_{\alpha}[-1,1]$ and

$$
\int_{-1}^{1} f(t) d t=2 f(0)
$$

3. (a) (10 points) Show by example that it is not true that if α is bounded on $[a, b]$ and f is continuous on $[a, b]$, then $\int_{a}^{b}|f| d \alpha=0$ implies f identically vanishes. Remember to justify your answer.

Let α be the weight from problem 2 b). Let $f(x)=x^{2}$ so f is continuous and $|f|=f$. By the computation of problem 2 c) one has

$$
\int_{-1}^{1}|f| d \alpha=|f(0)|=0
$$

but clearly f does not identically vanish.
(b) (15 points) Show that if $\alpha:[a, b] \rightarrow \mathbb{R}$ is strictly increasing (i.e., $x>y \Rightarrow \alpha(x)>\alpha(y)$), and $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $\int_{a}^{b}|f| d \alpha=0$ implies f identically vanishes.

Suppose $f\left(x_{0}\right) \neq 0$ at some point $x_{0} \in[a, b]$. By the continuity of f we may suppose $x_{0} \in(a, b)$ and up to replacing f by $-f$ we may assume $f\left(x_{0}\right)>0$. The continuity of f implies that there is a $\delta>0$ so $I=\left[x_{0}-\delta, x_{0}+\delta\right] \subset[a, b]$ and $f(x) \geq \frac{1}{2} f\left(x_{0}\right)>0$ on I. As α is increasing and $|f(t)| \geq 0$ we have, for any $a \leq x<y \leq b$ that

$$
\int_{x}^{y}|f| d \alpha \geq 0
$$

Using properties of the integral, we have

$$
\begin{aligned}
\int_{a}^{b}|f| d \alpha & =\int_{a}^{x_{0}-\delta}|f| d \alpha+\int_{x_{0}-\delta}^{x_{0}+\delta}|f| d \alpha+\int_{x_{0}+\delta}^{b}|f| d \alpha \\
& \geq \int_{x_{0}-\delta}^{x_{0}+\delta}|f| d \alpha \\
& \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{1}{2} f\left(x_{0}\right) d \alpha \\
& =\frac{1}{2} f\left(x_{0}\right)\left(\alpha\left(x_{0}+\delta\right)-\alpha\left(x_{0}-\delta\right)\right) \\
& >0
\end{aligned}
$$

where the last inequality follows as α is strictly increasing anf $f\left(x_{0}\right)>0$. Hence, if $\int_{a}^{b}|f| d \alpha=0$ one must have $f=0$ identically.
4. (10 points) Let $E_{n}=\left[4^{-n}, 4^{-n+\frac{1}{2}}\right]$. Show that $E=\bigcup_{n=0}^{\infty} E_{n}$ is (Lebesgue) measurable and compute $m(E)$.

First of all as each E_{n} is a closed bounded interval, each one is measurable. The σ-algebra property of measurable sets implies that E is also measurable. As the Lebesgue measure of any interval is its length we have

$$
m\left(E_{n}\right)=4^{-n+\frac{1}{2}}-4^{-n}=2 * 4^{-n}-4^{-n}=4^{-n}
$$

Finally, one readily sees $E_{n} \cap E_{m}=\emptyset$ when $n \neq m$. Hence, by the countable additivity property of measurable sets one has

$$
m(E)=\sum_{n=0}^{\infty} m\left(E_{n}\right)=\sum_{n=0}^{\infty} 4^{-n}=\frac{4}{3} .
$$

5. (15 points) Let $E, F \subset \mathbb{R}$ be (Lebesgue) measurable sets. Show that $m(E \cup F)+m(E \cap F)=$ $m(E)+m(F)$. Explain why this may not hold if E and F are not Lebesgue measurable.

First observe that if $m(E)=\infty$ of $m(F)=\infty$, then as $E, F \subset E \cup F, m(E \cup F)=\infty$. That is both left and right hand side are infinity and the result holds.
Hence, we may assume $m(E), m(F)<\infty$. As E and F are measurable one has $E \cap F$ measurable and also $E^{\prime}=E \backslash(E \cap F)$ and $F^{\prime}=F \backslash(E \cap F)$. As E is the disjoint union of $E \cap F$ and E^{\prime} and F is the disjoint union of $E \cap F$ and F^{\prime} and everything is measurable, countable additivity gives

$$
m(E)+m(F)=m\left(E^{\prime}\right)+m(E \cap F)+m\left(F^{\prime}\right)+m(E \cap F) .
$$

However, $E \cup F$ is clearly the disjoint union of E^{\prime}, F^{\prime} and $E \cap F$ and so countable additivity again gives

$$
m(E \cup F)=m\left(E^{\prime}\right)+m\left(F^{\prime}\right)+m(E \cap F)
$$

Combining these two observations gives

$$
m(E)+m(F)=m(E \cup F)+m(E \cap F) .
$$

The result need not be true (for outer measure) if E and F are not measurable as we used countable additivity in a crucial way. Indeed, there are disjoint non-measurable sets E and F so that $m^{*}(E \cap F)+m^{*}(E \cup F)=m^{*}(E \cup F)<m^{*}(E)+m^{*}(F)$.

