
Solutions Exam 1 — Mar. 14, 2018

1. (15 points) Let f : [0, 4]→ R increase from −1 to 0 on [0, 1] and decrease from 1 to −1 on (1, 4] (i.e.,
f(0) = −1, f(1) = 0, limx→1+ f(x) = 1, f(4) = −1 and f is monotone on [0, 1] and (1, 4]). Show that
f is a BV function and compute its total variation V 4

0 f .

First observe that, as limx→1+ f(x) = 1, for any ε > 0 there is a δ > 0 so if x ∈ (1, 1 + δ),
then f(x) ≥ 1 − ε > 0. Now let P = {x0, . . . , xn} be any partition of [0, 4]. Up to taking a
a finer partition, Pε one may assume that there are is an index n > i1 > 0 so xi1 = 1 and so
1 ≥ f(xi1+1) ≥ 1 − ε > 0. Notice that f is increasing on [x0, xi1 ] and is decreasing on (xi1 , 1].
Hence,

V (f, P ) ≤ V (f, Pε) =

n∑
i=1

|f(xi)− f(xi−1)|

=

i1∑
i=1

(f(xi)− f(xi−1)) + |f(xi1+1)− f(xi)| −
n∑

i=i1+2

(f(xi)− f(xi−1)

As two of these sums are telescoping one has

V (f, Pε) = f(xi1)− f(x0) + f(xi1 + 1)− f(xn) + |f(xi1 + 1)− f(xi)|.

As f(xi1) = 0 and 1 ≥ f(xi1+1) ≥ 1− ε one has

V (f, Pε) = f(xi1)− f(x0) + f(xi1 + 1)− f(xn) + f(xi1 + 1)− f(xi)

and hence
4− 2ε ≤ V (f, Pε) ≤ 4.

This implies that
V 4
0 f = sup {V (f, P ) : P} = 4

and so f is BV.
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2. (a) (10 points) Give an example of a bounded function f : [0, 1]→ R that is not Riemann integrable
on [0, 1], i.e. so f 6∈ R[0, 1]. Remember to justify your answer.

The function

f(x) =

{
1 x ∈ [0, 1] ∩Q
0 x ∈ [0, 1]\Q

}
is bounded, but is not Riemann integrable. This is because for any partition P of [0, 1] one
has U(f, P ) = 1 while L(f, P ) = 0.

(b) (10 points) Let α : [−1, 1]→ R be given by

α(x) =

{
−1 x ∈ [−1, 0]
1 x ∈ (0, 1].

Give an example of a bounded function f : [−1, 1] → R with a finite number of discontinuities
that is not Riemann-Stieltjes integrable with respect to α, i.e., so f 6∈ Rα[−1, 1]. Remember to
justify your answer.

Let f(x) = α(x). Clearly f has exactly one discontinuity at x = 0, but f 6∈ Rα[−1, 1]. The
reason for this is if P is a partition of [−1, 1] which contains 0 one has Uα(f, P ) = 2 while
Lα(f, P ) = −2.
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(c) (15 points) Show that if f : [−1, 1] → R is continuous, then is Riemann-Stieltjes integrable with
respect to the α from part b), i.e., f ∈ Rα[−1, 1]. Compute

∫ 1
−1 fdα.

Given ε > 0 pick δ > 0 so for |x| ≤ δ, |f(x)−f(0)| ≤ ε
2 . Pick any partition P of [−1, 1]. Up to

passing to a finer partition, Pε, one may assume that 0 = xi1 ∈ Pε and and xi1 < xi1+1 < δ.
Notice that for i = i1 one has α(xi+1)− α(xi) = 2, while for i 6= i1, α(xi+1)− α(xi) = 0.

On [xi1 , xi1+1] one has

f(0)− ε/2 ≤ inf
[xi1 ,xi1+1]

f(x) ≤ sup
[xi1 ,xi1+1]

f(x) ≤ f(0) + ε/2.

Hence,
2f(0) + ε ≥ Uα(f, Pε) ≥ Lα(f, Pε) ≥ 2f(0)− ε.

As ε > 0 is arbitrary, and α is increasing this means that

2f(0) ≥ inf
P
Uα(f, P ) ≥ sup

P
Lα(f, P ) ≥ 2f(0).

And so one has equality throughout. This implies f ∈ Rα[−1, 1] and∫ 1

−1
f(t)dt = 2f(0).
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3. (a) (10 points) Show by example that it is not true that if α is bounded on [a, b] and f is continuous

on [a, b], then
∫ b
a |f |dα = 0 implies f identically vanishes. Remember to justify your answer.

Let α be the weight from problem 2 b). Let f(x) = x2 so f is continuous and |f | = f . By the
computation of problem 2 c) one has∫ 1

−1
|f |dα = |f(0)| = 0

but clearly f does not identically vanish.
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(b) (15 points) Show that if α : [a, b] → R is strictly increasing (i.e., x > y ⇒ α(x) > α(y)), and

f : [a, b]→ R is continuous, then
∫ b
a |f |dα = 0 implies f identically vanishes.

Suppose f(x0) 6= 0 at some point x0 ∈ [a, b]. By the continuity of f we may suppose x0 ∈ (a, b)
and up to replacing f by −f we may assume f(x0) > 0. The continuity of f implies that
there is a δ > 0 so I = [x0 − δ, x0 + δ] ⊂ [a, b] and f(x) ≥ 1

2f(x0) > 0 on I. As α is increasing
and |f(t)| ≥ 0 we have, for any a ≤ x < y ≤ b that∫ y

x
|f |dα ≥ 0.

Using properties of the integral, we have∫ b

a
|f |dα =

∫ x0−δ

a
|f |dα+

∫ x0+δ

x0−δ
|f |dα+

∫ b

x0+δ
|f |dα

≥
∫ x0+δ

x0−δ
|f |dα

≥
∫ x0+δ

x0−δ

1

2
f(x0)dα

=
1

2
f(x0) (α(x0 + δ)− α(x0 − δ))

> 0

where the last inequality follows as α is strictly increasing anf f(x0) > 0. Hence, if
∫ b
a |f |dα = 0

one must have f = 0 identically.
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4. (10 points) Let En = [4−n, 4−n+
1
2 ]. Show that E =

⋃∞
n=0En is (Lebesgue) measurable and compute

m(E).

First of all as each En is a closed bounded interval, each one is measurable. The σ-algebra property
of measurable sets implies that E is also measurable. As the Lebesgue measure of any interval is
its length we have

m(En) = 4−n+
1
2 − 4−n = 2 ∗ 4−n − 4−n = 4−n.

Finally, one readily sees En ∩ Em = ∅ when n 6= m. Hence, by the countable additivity property
of measurable sets one has

m(E) =
∞∑
n=0

m(En) =
∞∑
n=0

4−n =
4

3
.
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5. (15 points) Let E,F ⊂ R be (Lebesgue) measurable sets. Show that m(E ∪ F ) + m(E ∩ F ) =
m(E) +m(F ). Explain why this may not hold if E and F are not Lebesgue measurable.

First observe that if m(E) = ∞ of m(F ) = ∞, then as E,F ⊂ E ∪ F , m(E ∪ F ) = ∞. That is
both left and right hand side are infinity and the result holds.

Hence, we may assume m(E),m(F ) <∞. As E and F are measurable one has E ∩ F measurable
and also E′ = E\(E ∩F ) and F ′ = F\(E ∩F ). As E is the disjoint union of E ∩F and E′ and F
is the disjoint union of E ∩ F and F ′ and everything is measurable, countable additivity gives

m(E) +m(F ) = m(E′) +m(E ∩ F ) +m(F ′) +m(E ∩ F ).

However, E ∪F is clearly the disjoint union of E′, F ′ and E ∩F and so countable additivity again
gives

m(E ∪ F ) = m(E′) +m(F ′) +m(E ∩ F )

Combining these two observations gives

m(E) +m(F ) = m(E ∪ F ) +m(E ∩ F ).

The result need not be true (for outer measure) if E and F are not measurable as we used countable
additivity in a crucial way. Indeed, there are disjoint non-measurable sets E and F so that
m∗(E ∩ F ) +m∗(E ∪ F ) = m∗(E ∪ F ) < m∗(E) +m∗(F ).


