Solutions Exam 2 - May 2, 2018

1. (a) (10 points) State the definition of a measurable function $f: E \rightarrow \mathbb{R}$.

A function $f: E \rightarrow \mathbb{R}$ is measurable if and only if E is a measurable subset and for each $\alpha \in \mathbb{R}, f^{-1}((-\infty, \alpha))=\{x \in E: f(x)<\alpha\}$ is a measurable set.
(b) (15 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be measurable and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Prove that $g \circ f$ is measurable.

As g is continuous $U_{\alpha}=g^{-1}((-\infty, \alpha))=U_{\alpha}$ is an open set. A basic property of a measurable function f is that for any open set $U, f^{-1}(U)$ is measurable, hence $(g \circ f)^{-1}((-\infty, \alpha))=$ $f^{-1}\left(U_{\alpha}\right)$ is measurable and so $g \circ f$ is also measurable. To see why this basic property holds, we observe that for any open interval, $I, f^{-1}(I)$ is measurable. Indeed, if $I=(a, b)$ and $b<\infty$, then $f^{-1}(I) \in \mathcal{M}$ by definition when $a=-\infty$ and when $a \in \mathbb{R}$

$$
f^{-1}(I)=f^{-1}((-\infty, b)) \backslash \bigcup_{n=1}^{\infty} f^{-1}\left(\left(-\infty, a-\frac{1}{n}\right)\right)
$$

and so the measurablity of $f^{-1}(I)$ follows from the definition and the σ-algebra property of \mathcal{M}. When $b=\infty$ one has

$$
f^{-1}(I)=\bigcup_{n=1}^{\infty} f^{-1}(I \cap(-\infty, n))
$$

and each $f^{-1}(I \cap(-\infty, n)) \in \mathcal{M}$ by the previous observation and so $f^{-1}(I) \in \mathcal{M}$ by σ-algebra property. As any open set, U, is the countable union of open intervals, i.e. $U=\cup_{n=1}^{\infty} I_{n}$ for open intervals I_{n}. The fact that $f^{-1}(U) \in \mathcal{M}$ follows from the σ-algebra property of \mathcal{M}.
2. Let $f: \mathbb{R} \rightarrow[0, \infty]$ be a non-negative measurable function.
(a) (10 points) State the definition of the Lebesgue integral of f.

Given f, the Lebesgue integral of f is defined to by

$$
\int f=\sup \left\{\int \phi: 0 \leq \phi \leq f, \text { and } \phi \text { is a simple function }\right\} .
$$

Here ϕ is simple means that $\phi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ where $a_{i} \in \mathbb{R}$ and $E_{i} \in \mathcal{M}$ and

$$
\int \phi=\int \sum_{i=1}^{n} a_{i} \chi_{E_{i}}=\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)
$$

(b) (10 points) Directly using the definition, show that

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{x^{2}} & x \neq 0 \\
\infty & x=0
\end{array}\right.
$$

is not Lebesgue integrable.
Recall, f is Lebesgue integrable if and only if $\int f<\infty$. Consider the sequence of simple functions $\phi_{n}=n^{2} \chi_{\left(0, \frac{1}{n}\right)}$. Clearly, $0 \leq \phi_{n} \leq f$ and one has

$$
\int \phi_{n}=n^{2} m\left(\left(0, \frac{1}{n}\right)\right)=n
$$

Hence, $\int f \geq n$ for all $n \geq 1$ and so $\int f=\infty$. That is, f is not Lebesgue integrable.
(c) (10 points) Show that $f(x)=\frac{1}{1+x^{2}}$ is Lebesgue integrable, i.e., is in $L_{1}(\mathbb{R})$.

First observe that f is continuous and hence measurable. Let $f_{n}(x)=\chi_{[-n, n]} f(x)$. Clearly each f_{n} is measurable and the sequence $\left(f_{n}\right)$ is monotone and $\lim _{n \rightarrow \infty} f_{n}=f$ pointwise. Hence, by the monotone convergence theorem

$$
\int f=\lim _{n \rightarrow \infty} \int f_{n}=\lim _{n \rightarrow \infty} \int_{-n}^{n} \frac{1}{1+x^{2}}
$$

As $\frac{1}{1+x^{2}}$ is continuous and $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$ one can use the fundamental theorem of calculus to see that

$$
\int_{-n}^{n} \frac{1}{1+x^{2}}=\arctan (n)-\arctan (-n)
$$

Hence,

$$
\int f=\lim _{n \rightarrow \infty} \int_{-n}^{n} \frac{1}{1+x^{2}}=\lim _{n \rightarrow \infty}(\arctan (n)-\arctan (-n))=\pi<\infty
$$

and so f is Lebesgue integrable.
3. Let $\left(f_{n}\right)$ be a sequence of Lebesgue integrable functions (i.e., $f_{n} \in L_{1}(\mathbb{R})$) that converge pointwise to the zero function.
(a) (10 points) Show, by example, that it is possible for the f_{n} to not converge in $L_{1}(\mathbb{R})$.

Let $f_{n}(x)=\chi_{[n, n+1]}$. For each x, as long as $n \geq|x|+1$, one has $f_{n}(x)=0$. Hence, $\lim _{n \rightarrow \infty} f_{n}=0$ pointwise. However, $\int\left|f_{n}-f_{n+2}\right|=\int f_{n}+f_{n+2}=2$ and so the sequence $\left(f_{n}\right)$ is not Cauchy in $L_{1}(\mathbb{R})$ and hence cannot converge to the zero function or to any other function.
(b) (10 points) Suppose that, in addition, the f_{n} satisfy $\left|f_{n}(x)\right| \leq \frac{1}{1+x^{2}}$ for a.e. $x \in \mathbb{R}$. Show that the f_{n} converge in $L_{1}(\mathbb{R})$ to the zero function.

In a previous problem we established that $g(x)=\frac{1}{1+x^{2}}$ is Lebesgue integrable. Hence, by the Lebesgue dominated convergence theorem one has

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}\right|=\int \lim _{n \rightarrow \infty}\left|f_{n}\right|=\int 0=0
$$

That is, f_{n} converges to 0 in $L_{1}(\mathbb{R})$.
4. (a) (15 points) Show that there is a continuous function $g:[-\pi, \pi] \rightarrow \mathbb{R}$ with Fourier series given by

$$
\sum_{k=1}^{\infty} 2^{-k} \cos k x
$$

What is the value of $\|g\|_{2}^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} g^{2}(x) d x$?
Notice that on $[-\pi, \pi]$ one has,

$$
\sup _{[-\pi, \pi]}\left|2^{-k} \cos k x\right| \leq 2^{-k}
$$

and the series $\sum_{k=1}^{\infty} 2^{-k}=1<\infty$ is summable. Hence, by the Weierstrass M-test, the functions

$$
s_{n}(x)=\sum_{k=1}^{n} 2^{-k} \cos k x \in \mathcal{T}_{n}
$$

are continuous and satisfy $s_{n} \rightarrow g$ uniformly for some continuous function $g:[-\pi, \pi] \rightarrow \mathbb{R}$. We claim g has the desired Fourier series. To see this, we observe that for $g \geq k$

$$
a_{k}\left(s_{n}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} s_{n}(x) \cos (k x) d x=2^{-k}
$$

Hence, for $k \geq 1$

$$
a_{k}(g)=\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos (k x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\lim _{n \rightarrow \infty} s_{n}(x)\right) \cos (k x) d x=\lim _{n \rightarrow \infty} \frac{1}{\pi} \int_{-\pi}^{\pi} s_{n}(x) \cos (k x) d x
$$

where we are allowed to interchange limits and integration as the convergence is uniform. Hence,

$$
a_{k}(g)=2^{-k}
$$

Similarly, one sees $b_{k}(g)=0$ for all k and $a_{0}(g)=0$. That is, g has the desired Fourier series. Finally, by using Parseval's identity we can compute that

$$
\|g\|_{2}^{2}=\frac{a_{0}(g)^{2}}{2}+\sum_{k=1}^{\infty}\left(a_{k}(g)^{2}+b_{k}(g)^{2}\right)=\sum_{k=1}^{\infty}\left(2^{-k}\right)^{2}=\sum_{k=1}^{\infty} 4^{-k}=\frac{1}{3} .
$$

(b) (10 points) Show that there is no continuous function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ with Fourier series

$$
\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{k}} \cos k x+\frac{1}{k} \sin k x\right) .
$$

If there was such a f, then one would have

$$
s_{n}(f)=\sum_{k=1}^{n}\left(\frac{1}{\sqrt{k}} \cos k x+\frac{1}{k} \sin k x\right)
$$

And hence, by Bessel's inequality and the orthogonality of the trigonometric functions,

$$
\sum_{k=1}^{n}\left(\frac{1}{k}+\frac{1}{k^{2}}\right)=\left\|s_{n}(f)\right\|_{2}^{2} \leq\|f\|_{2}^{2}<\infty
$$

Here the last inequality follows as f is continuous and hence bounded on $[-\pi, \pi]$. However,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}=\sum_{k=1}^{\infty} \frac{1}{k}=\infty
$$

as the harmonic series diverges. This contradicts,

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k} \leq \sum_{k=1}^{n}\left(\frac{1}{k}+\frac{1}{k^{2}}\right) \leq\|f\|_{2}^{2}<\infty .
$$

That is, there can be no such f.

