
Solutions Exam 2 — May 2, 2018

1. (a) (10 points) State the definition of a measurable function f : E → R.

A function f : E → R is measurable if and only if E is a measurable subset and for each
α ∈ R, f−1((−∞, α)) = {x ∈ E : f(x) < α} is a measurable set.

(b) (15 points) Let f : R → R be measurable and g : R → R be continuous. Prove that g ◦ f is
measurable.

As g is continuous Uα = g−1((−∞, α)) = Uα is an open set. A basic property of a measurable
function f is that for any open set U , f−1(U) is measurable, hence (g ◦ f)−1((−∞, α)) =
f−1(Uα) is measurable and so g ◦ f is also measurable. To see why this basic property holds,
we observe that for any open interval, I, f−1(I) is measurable. Indeed, if I = (a, b) and
b <∞, then f−1(I) ∈M by definition when a = −∞ and when a ∈ R

f−1(I) = f−1((−∞, b))\
∞⋃
n=1

f−1((−∞, a− 1

n
))

and so the measurablity of f−1(I) follows from the definition and the σ-algebra property of
M. When b =∞ one has

f−1(I) =
∞⋃
n=1

f−1(I ∩ (−∞, n))

and each f−1(I∩ (−∞, n)) ∈M by the previous observation and so f−1(I) ∈M by σ-algebra
property. As any open set, U , is the countable union of open intervals, i.e. U = ∪∞n=1In for
open intervals In. The fact that f−1(U) ∈M follows from the σ-algebra property of M.
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2. Let f : R→ [0,∞] be a non-negative measurable function.

(a) (10 points) State the definition of the Lebesgue integral of f .

Given f , the Lebesgue integral of f is defined to by∫
f = sup

{∫
φ : 0 ≤ φ ≤ f, and φ is a simple function

}
.

Here φ is simple means that φ =
∑n

i=1 aiχEi where ai ∈ R and Ei ∈M and∫
φ =

∫ n∑
i=1

aiχEi =

n∑
i=1

aim(Ei).

(b) (10 points) Directly using the definition, show that

f(x) =

{
1
x2

x 6= 0
∞ x = 0,

is not Lebesgue integrable.

Recall, f is Lebesgue integrable if and only if
∫
f < ∞. Consider the sequence of simple

functions φn = n2χ(0, 1
n
). Clearly, 0 ≤ φn ≤ f and one has∫

φn = n2m((0,
1

n
)) = n

Hence,
∫
f ≥ n for all n ≥ 1 and so

∫
f =∞. That is, f is not Lebesgue integrable.
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(c) (10 points) Show that f(x) = 1
1+x2

is Lebesgue integrable, i.e., is in L1(R).

First observe that f is continuous and hence measurable. Let fn(x) = χ[−n,n]f(x). Clearly
each fn is measurable and the sequence (fn) is monotone and limn→∞ fn = f pointwise.
Hence, by the monotone convergence theorem∫

f = lim
n→∞

∫
fn = lim

n→∞

∫ n

−n

1

1 + x2
.

As 1
1+x2

is continuous and d
dx arctan(x) = 1

1+x2
one can use the fundamental theorem of

calculus to see that ∫ n

−n

1

1 + x2
= arctan(n)− arctan(−n).

Hence, ∫
f = lim

n→∞

∫ n

−n

1

1 + x2
= lim

n→∞
(arctan(n)− arctan(−n)) = π <∞

and so f is Lebesgue integrable.
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3. Let (fn) be a sequence of Lebesgue integrable functions (i.e., fn ∈ L1(R)) that converge pointwise to
the zero function.

(a) (10 points) Show, by example, that it is possible for the fn to not converge in L1(R).

Let fn(x) = χ[n,n+1]. For each x, as long as n ≥ |x| + 1, one has fn(x) = 0. Hence,
limn→∞ fn = 0 pointwise. However,

∫
|fn − fn+2| =

∫
fn + fn+2 = 2 and so the sequence

(fn) is not Cauchy in L1(R) and hence cannot converge to the zero function or to any other
function.

(b) (10 points) Suppose that, in addition, the fn satisfy |fn(x)| ≤ 1
1+x2

for a.e. x ∈ R. Show that the
fn converge in L1(R) to the zero function.

In a previous problem we established that g(x) = 1
1+x2

is Lebesgue integrable. Hence, by the
Lebesgue dominated convergence theorem one has

lim
n→∞

∫
|fn| =

∫
lim
n→∞

|fn| =
∫

0 = 0.

That is, fn converges to 0 in L1(R).
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4. (a) (15 points) Show that there is a continuous function g : [−π, π]→ R with Fourier series given by

∞∑
k=1

2−k cos kx.

What is the value of ‖g‖22 = 1
π

∫ π
−π g

2(x) dx?

Notice that on [−π, π] one has,

sup
[−π,π]

|2−k cos kx| ≤ 2−k

and the series
∑∞

k=1 2−k = 1 < ∞ is summable. Hence, by the Weierstrass M -test, the
functions

sn(x) =
n∑
k=1

2−k cos kx ∈ Tn

are continuous and satisfy sn → g uniformly for some continuous function g : [−π, π] → R.
We claim g has the desired Fourier series. To see this, we observe that for g ≥ k

ak(sn) =
1

π

∫ π

−π
sn(x) cos(kx)dx = 2−k

Hence, for k ≥ 1

ak(g) =
1

π

∫ π

−π
g(x) cos(kx)dx =

1

π

∫ π

−π
( lim
n→∞

sn(x)) cos(kx)dx = lim
n→∞

1

π

∫ π

−π
sn(x) cos(kx)dx

where we are allowed to interchange limits and integration as the convergence is uniform.
Hence,

ak(g) = 2−k.

Similarly, one sees bk(g) = 0 for all k and a0(g) = 0. That is, g has the desired Fourier series.
Finally, by using Parseval’s identity we can compute that

‖g‖22 =
a0(g)2

2
+
∞∑
k=1

(
ak(g)2 + bk(g)2

)
=
∞∑
k=1

(2−k)2 =
∞∑
k=1

4−k =
1

3
.
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(b) (10 points) Show that there is no continuous function f : [−π, π]→ R with Fourier series

∞∑
k=1

(
1√
k

cos kx+
1

k
sin kx

)
.

If there was such a f , then one would have

sn(f) =
n∑
k=1

(
1√
k

cos kx+
1

k
sin kx

)
And hence, by Bessel’s inequality and the orthogonality of the trigonometric functions,

n∑
k=1

(
1

k
+

1

k2

)
= ‖sn(f)‖22 ≤ ‖f‖22 <∞.

Here the last inequality follows as f is continuous and hence bounded on [−π, π]. However,

lim
n→∞

n∑
k=1

1

k
=

∞∑
k=1

1

k
=∞

as the harmonic series diverges. This contradicts,

lim
n→∞

n∑
k=1

1

k
≤

n∑
k=1

(
1

k
+

1

k2

)
≤ ‖f‖22 <∞.

That is, there can be no such f .


