The second real

Johnson-Wilson theory and non-immersions of $R P^{n}$

Nitu Kitchloo and W. Stephen Wilson

March 7, 2007
$E(n)$ is $\left|v_{n}\right|=2\left(2^{n}-1\right)$ periodic.
$E R(n)$ is $\left|v_{n}^{n+1}\right|=2^{n+2}\left(2^{n}-1\right)$ periodic.

The degree of x is $-\lambda(n)=-2^{2 n+1}+2^{n+2}-1$

$$
x^{2^{n+1}-1}=0
$$

For $n=1|x|=-2^{3}+2^{3}-1=-1$ and $x=\eta$ because $E R(1)=K O_{(2)}$ and $E(1)=K U_{(2)}$.

For $n=1$ periodicity is $2^{3}\left(2^{1}-1\right)=8$.
$K U_{(2)}=E(1)$ is 2-periodic. Grade all over $\mathbb{Z} /(8)$.

Compute $K O_{(2)}^{*}$ from $K U_{(2)}^{*}$.
We know the answer: (Graded over $\mathbb{Z} /(8)$.

Free $\mathbb{Z}_{(2)}$ on 1 in degree 0.
Free $\mathbb{Z}_{(2)}$ on β in degree -4.
$\mathbb{Z} /(2)$ on η in degree -1 .
$\eta^{3} 1=0 \eta \beta=0$ and $\beta^{2}=4$.

Only 3 differentials because $x=\eta$ has $x^{3}=0$.

Degree of d^{r} is $r+1$.
$K U_{(2)}^{*}$ is $\mathbb{Z}_{(2)}$ free on $v_{1}^{i}, 0 \leq i<4$.
Set $v_{1}^{4}=1 .\left|v_{1}\right|=-2$.

$$
E^{1}=K U_{(2)}^{*}
$$

$$
E^{2}=E^{3}
$$

Facts about $E R(2) .|x|=-17 . x^{7}=0$.
$E(2)^{*}=\mathbb{Z}_{(2)}\left[v_{1}, v_{2}^{ \pm 1}\right]$.
$E R(2)$ is 48 periodic, so for $E(2)$ we set $v_{2}^{8}=1$.
(Recall $\left|v_{2}\right|=-6$.) Index over $\mathbb{Z} /(48)$.
No v_{1} in $E R(2)^{*}$ but there is an $\alpha \in E R(2)^{-32}$.
$\alpha \longrightarrow v_{2}^{5} v_{1}$. Replace v_{1} with $\alpha \in E(2)^{*}$.
$E(2)^{*}$ is $\mathbb{Z}_{(2)}$ free on $v_{2}^{i} \alpha^{j}, 0 \leq i<8,0 \leq j$.
Compute $E R(2)^{*}$ from $E(2)^{*}$.

As differentials get harder, there is less to deal with!

We want applications.

James says: If $R P^{2 n}$ immerses (\subseteq) in $\mathbb{R}^{2 k}$ then there exists an axial map:

$$
R P^{2 n} \times R P^{2^{K}-2 k-2} \longrightarrow R P^{2^{K}-2 n-2} .
$$

Don Davis uses $B P$, or, really, $B P\langle 2\rangle^{*}(-)$.
$B P\langle 2\rangle^{*} \simeq \mathbb{Z}_{(2)}\left[v_{1}, v_{2}\right]$.
There is no v_{2} torsion so we can invert v_{2} and use $E(2)^{*}(-)$.

$$
\begin{aligned}
& E(2)^{*}\left(R P^{2^{K}-2 n-2}\right) \\
& E(2)^{*}\left(R P^{2 n}\right) \\
& \otimes_{E(2)^{*}} \\
& E(2)^{*}\left(R P^{2^{K}-2 k-2}\right) \\
& x_{2}^{2^{K-1}-n}=0 \text { maps non-trivially for } \\
& n=m+\alpha(m)-1 \text { and } \\
& k=2 m-\alpha(m) .
\end{aligned}
$$

Don shows $R P^{2 n} \nsubseteq \mathbb{R}^{2 k}$ for these n and k.

To do same with $E R(2)^{*}(-)$ we will need $E R(2)^{*}\left(R P^{2 n}\right)$.
E^{1} of spectral sequence is $E(2)^{*}\left(R P^{2 n}\right)$
$v_{2}^{s} \alpha^{k} u^{j}$ in a 2-adic basis.
$0 \leq s<8$
$0 \leq k$
$0<j \leq n$
u is not Don's x_{2}.
There is a $u \in E R(2)^{-16}\left(R P^{2 n}\right)$
which maps to $v_{2}^{3} x_{2}$.

We use this u.
d^{1} is easy.
d^{3} follows from
$R P^{2 n-2} \rightarrow R P^{2 n} \rightarrow R P^{2 n} / R P^{2 n-2}$.
Only have $d^{\{1,3,5,7\}}$ because even degree.
After d^{3} have $u^{\{1,2,3\}}$ and $v_{2}^{4} u^{\{1,2,3\}}$
There is a known
$d^{7}: v_{2}^{4} u^{\{1,2,3\}} \rightarrow u^{\{1,2,3\}}$
Differentials are hard now, but not much left.

For $n=0,3,4,7 \bmod 8$.

$$
\begin{array}{r}
v_{2}^{2} u^{n-1} \xrightarrow{u} v_{2}^{2} u^{n} \\
v_{2}^{3} u^{n}
\end{array}
$$

$$
v_{2}^{6} u^{n-1} \xrightarrow{u} v_{2}^{6} u^{n}
$$

$$
v_{2}^{7} u^{n}
$$

For $n=1,2,5,6 \bmod 8$.

$$
\begin{array}{r}
v_{2}^{2} u^{n-1} \xrightarrow{v_{2}^{1} u^{n}} v_{2}^{2} u^{n} \\
v_{2}^{6} u^{n-1} \xrightarrow{d^{5}} u^{n} v_{2}^{6} u^{n}
\end{array}
$$

Element of interest:

$$
x^{2} \alpha^{k} v_{2}^{5} u^{n}=\alpha^{k} u^{n+1} \neq 0 .
$$

$K U^{0}\left(R P^{2 n}\right)$ has $u^{n} \neq 0$ and $u^{n+1}=0$.
For $n=0,3 \bmod 4$.
$K O^{0}\left(R P^{2 n}\right)$ has $u^{n} \neq 0$ and $u^{n+1}=0$.
For $n=1,2 \bmod 4$.
$K O^{0}\left(R P^{2 n}\right)$ has $u^{n+1} \neq 0$ and $u^{n+2}=0$.
$E(2)^{16 *}\left(R P^{2 n}\right)$ has $\alpha^{k} u^{j} 0<j \leq n$.

Theorem 1. $E R(2)^{16 *}\left(R P^{2 n}\right)$ consists of the elements $\alpha^{k} u^{j}$, with $0 \leq k$ and $0<j \leq n$, and, when
$n=0$ or 7 modulo 8, no others,
$n=1$ or 6 modulo $8, \alpha^{k} u^{n+1}$,
$n=2$ or 5 modulo $8, \alpha^{k} u^{n+1}$, and u^{n+2},
$n=3$ or 4 modulo $8, u^{n+1}, u^{n+2}$, and u^{n+3},

We have, when $n=0,7 \bmod 8:$

$$
E R(2)^{16 *}\left(R P^{2 n}\right) \simeq E(2)^{16 *}\left(R P^{2 n}\right)
$$

Purely algebraically, we have surjections

$$
E R(2)^{16 *}\left(R P^{2 n}\right) \longrightarrow E(2)^{16 *}\left(R P^{2 n+2}\right)
$$

when $n=1,2,5,6 \bmod 8$.

Back to the axial maps.

$$
\begin{gathered}
E R(2)^{*}\left(R P^{2^{K}-2 n-2}\right) \longrightarrow E(2)^{*}\left(R P^{2^{K}-2 n-2}\right) \\
E R(2)^{*}\left(R P^{2 n}\right) \\
\otimes_{E R(2)^{*}} \longrightarrow(2)^{*}\left(R P^{2 n}\right) \\
\otimes_{E(2)^{*}}
\end{gathered}
$$

$$
E R(2)^{*}\left(R P^{2^{K}-2 k-4}\right) \quad E(2)^{*}\left(R P^{2^{K}-2 k-2}\right)
$$

When $n=0,7 \bmod 8$, top two are isomorphisms.

When $-k-2=1,2,5,6 \bmod 8$, bottom is surjection.

Now we mooch off of Don to show it is nonzero in the tensor product.

Theorem 2. When the pair $(m, \alpha(m))$ is, modulo $8,(2,7),(7,2),(6,3),(3,6),(7,1),(4,4)$, $(3,5)$, or $(0,0)$, then

$$
\begin{gathered}
R P^{2(m+\alpha(m)-1)} \text { does not immerse }(\nsubseteq) \\
\text { in } \mathbb{R}^{2(2 m-\alpha(m)+1)} .
\end{gathered}
$$

When the pair $(m, \alpha(m))$ is, modulo $8,(4,3)$, $(1,6),(0,7)$, or $(5,2)$, then

$$
R P^{2(m+\alpha(m))} \nsubseteq \text { in } \mathbb{R}^{2(2 m-\alpha(m)+1)} .
$$

An improvement of 1 or 2 for half of the k 's and $1 / 4$ of the n 's, so for $1 / 8$ of the cases he deals with.
$(m, \alpha(m))=(6,3) \bmod 8$.

$$
R P^{16+2^{i+1}} \nsubseteq \mathbb{R}^{20+2^{i+2}}
$$

$R P^{48} \nsubseteq \mathbb{R}^{84} \quad R P^{80} \nsubseteq \mathbb{R}^{148} \quad R P^{144} \nsubseteq \mathbb{R}^{276}$.
$(m, \alpha(m))=(4,4) \bmod 8$.

$$
\begin{gathered}
R P^{62+2^{i}} \nsubseteq \mathbb{R}^{106+2^{i+1}} \\
R P^{126} \nsubseteq \mathbb{R}^{234} \quad R P^{190} \nsubseteq \mathbb{R}^{362}
\end{gathered}
$$

The pair $(4,3)$ mod 8 gives

$$
R P^{14+2^{i+1}+2^{j+1}} \nsubseteq \mathbb{R}^{12+2^{i+2}+2^{j+2}}
$$

$$
\begin{gathered}
R P^{62} \nsubseteq \mathbb{R}^{108} \quad R P^{94} \nsubseteq \mathbb{R}^{172} \quad R P^{158} \nsubseteq \mathbb{R}^{300} . \\
R P^{110} \nsubseteq \mathbb{R}^{204} \quad R P^{174} \nsubseteq \mathbb{R}^{332}
\end{gathered}
$$

Unfortunately, the tensor product is not enough.

$$
\begin{gathered}
E(2)^{*}\left(R P^{2^{K}-2 n-2}\right) \\
E(2)^{*}\left(R P^{2 n}\right) \\
\otimes_{E(2)^{*}} \\
E(2)^{*}\left(R P^{2^{K}-2 k-2}\right) \\
\mid \\
E(2)^{*}\left(R P^{2 n} \times R P^{2^{K}-2 k-2}\right)
\end{gathered}
$$

For $E(2)^{*}(-)$ this last map is an injection from C-F 1964.

Nothing like that for $E R(2)^{*}(-)$.
Two kinds of problems.

First:

Perhaps image of $u^{2^{K-1}-n}$ is $Z+x W$, with Z going to non-zero in $E(2)^{*}(-)$ but $Z+x W$ going to zero in $E R(2)^{*}$ (product).

$E R(2)^{*}\left(R P^{\infty}\right) \quad E(2)^{*}\left(R P^{\infty}\right)$

These are all isomorphisms in degrees 16*.

We have Kunneth theorems for $R P^{\infty}$ for both $E R(2)^{*}(-)$ and $E(2)^{*}(-)$.

There is no $x W$. The coproduct is exactly the same for both theories.

This is very special to 16 *.
$2 u+{ }_{F} \alpha u^{2}+{ }_{F} u^{4}=0$

Next we need to show that our obstruction is non-zero when we map

$$
\begin{gathered}
E R(2)^{*}\left(R P^{2^{K}-2 n-2}\right) \\
E R(2)^{*}\left(R P^{2 n}\right) \\
\otimes_{E R(2)^{*}}
\end{gathered}
$$

$$
E R(2)^{*}\left(R P^{2^{K}-2 k-4}\right)
$$

$$
1
$$

$$
E R(2)^{*}\left(R P^{2 n} \times R P^{2^{K}-2 k-4}\right)
$$

But we have no map

$$
\begin{gathered}
E R(2)^{*}\left(R P^{2 n} \times R P^{2^{K}-2 k-4}\right) \rightarrow \\
E(2)^{*}\left(R P^{2 n} \times R P^{2^{K}-2 k-2}\right)
\end{gathered}
$$

Theorem 3. Let $m \leq n$, then

$$
\begin{gathered}
B P^{*}\left(R P^{2 m} \wedge R P^{2 n}\right) \simeq \\
B P^{*}\left(R P^{2 m}\right) \otimes_{B P^{*}} B P^{*}\left(R P^{2 n}\right) \\
\oplus \Sigma^{2 n-1} B P^{*}\left(R P^{2 m}\right)
\end{gathered}
$$

Theorem 4. Let $m \leq n$, then

$$
\begin{gathered}
E(2)^{*}\left(R P^{2 m} \wedge R P^{2 n}\right) \simeq \\
E(2)^{*}\left(R P^{2 m}\right) \otimes_{E(2)^{*}} E(2)^{*}\left(R P^{2 n}\right) \\
\oplus \Sigma^{-16 n-1} E(2)^{*}\left(R P^{2 m}\right)
\end{gathered}
$$

represented by (2-adic basis)
$v_{2}^{s} \alpha^{k} u_{1}^{i} u_{2} \quad 0 \leq k \quad 0<i \leq m \quad 0 \leq s<8$
$v_{2}^{s} u_{1}^{i} u_{2}^{j} \quad 0<i \leq m \quad 1<j \leq n \quad 0 \leq s<8$
and
$v_{2}^{s} \alpha^{k} u_{1}^{j} z_{-16 n-17} \quad 0 \leq k \quad 0 \leq j<m \quad 0 \leq s<8$.

Because of the map $E R(2)^{*}(-) \rightarrow E(2)^{*}(-)$ we always have

$$
\begin{gathered}
\alpha^{k} u_{1}^{i} u_{2} \\
u_{1}^{i} u_{2}^{j}
\end{gathered}
$$

for $i \leq m$ and $1<j \leq n$.
For $n=1,2,5,6$ we also need $u_{1}^{i} u_{2}^{n+1}$.
By products, this would be

$$
x^{2} v_{2}^{5} u_{1}^{i} u_{2}^{n}=u_{1}^{i} u_{2}^{n+1}
$$

All we have to do is show that $v_{2}^{5} u_{1}^{i} u_{2}^{n}$ is not in the image of d^{1} or d^{2}.
d^{1} is easy. d^{2} is odd degree and we now have odd degree elements.

We show that $z_{-16 n-17}$ is a real element and this prevents the d^{2} hitting $v_{2}^{5} u_{1}^{i} u_{2}^{n}$.

