The second real Johnson-Wilson theory and non-immersions of RP^n

Nitu Kitchloo and W. Stephen Wilson

March 7, 2007

E(n) is $|v_n| = 2(2^n - 1)$ periodic. ER(n) is $|v_n^{n+1}| = 2^{n+2}(2^n - 1)$ periodic.

The degree of x is $-\lambda(n) = -2^{2n+1} + 2^{n+2} - 1$

$$x^{2^{n+1}-1} = 0$$

For n = 1 $|x| = -2^3 + 2^3 - 1 = -1$ and $x = \eta$ because $ER(1) = KO_{(2)}$ and $E(1) = KU_{(2)}$.

For n = 1 periodicity is $2^3(2^1 - 1) = 8$.

 $KU_{(2)} = E(1)$ is 2-periodic. Grade all over $\mathbb{Z}/(8)$.

Compute $KO^*_{(2)}$ from $KU^*_{(2)}$.

We know the answer: (Graded over $\mathbb{Z}/(8)$.)

Free $\mathbb{Z}_{(2)}$ on 1 in degree 0.

Free $\mathbb{Z}_{(2)}$ on β in degree -4.

 $\mathbb{Z}/(2)$ on η in degree -1.

 $\eta^3 1 = 0 \ \eta\beta = 0$ and $\beta^2 = 4$.

Only 3 differentials because $x = \eta$ has $x^3 = 0$.

Degree of d^r is r+1.

$$KU^*_{(2)}$$
 is $\mathbb{Z}_{(2)}$ free on v^i_1 , $0 \le i < 4$.

Set $v_1^4 = 1$. $|v_1| = -2$.

	$E^1 = KU^*_{(2)}$		$E^2 = E^3$
1	ℤ(2)	1	$\mathbb{Z}/(2)$
	$d^1=2$		
v_1	ℤ(2)		d^3

Facts about ER(2). |x| = -17. $x^7 = 0$.

 $E(2)^* = \mathbb{Z}_{(2)}[v_1, v_2^{\pm 1}].$

ER(2) is 48 periodic, so for E(2) we set $v_2^8 = 1$. (Recall $|v_2| = -6$.) Index over $\mathbb{Z}/(48)$. No v_1 in $ER(2)^*$ but there is an $\alpha \in ER(2)^{-32}$. $\alpha \longrightarrow v_2^5 v_1$. Replace v_1 with $\alpha \in E(2)^*$. $E(2)^*$ is $\mathbb{Z}_{(2)}$ free on $v_2^i \alpha^j$, $0 \le i < 8$, $0 \le j$. Compute $ER(2)^*$ from $E(2)^*$.

As differentials get harder, there is less to deal with!

We want applications.

James says: If RP^{2n} immerses (\subseteq) in \mathbb{R}^{2k} then there exists an axial map:

$$RP^{2n} \times RP^{2^K - 2k - 2} \longrightarrow RP^{2^K - 2n - 2}$$

Don Davis uses BP, or, really, $BP\langle 2 \rangle^*(-)$.

 $BP\langle 2 \rangle^* \simeq \mathbb{Z}_{(2)}[v_1, v_2].$

There is no v_2 torsion so we can invert v_2 and use $E(2)^*(-)$.

$$E(2)^{*}(RP^{2^{K}-2n-2})$$

 \downarrow
 $E(2)^{*}(RP^{2n})$
 $\otimes_{E(2)^{*}}$

$$E(2)^*(RP^{2^K-2k-2})$$

$$x_2^{2^{K-1}-n} = 0$$
 maps non-trivially for

$$n = m + \alpha(m) - 1$$
 and

$$k = 2m - \alpha(m).$$

Don shows $RP^{2n} \nsubseteq \mathbb{R}^{2k}$ for these n and k.

To do same with $ER(2)^*(-)$ we will need $ER(2)^*(RP^{2n}).$

 E^1 of spectral sequence is $E(2)^*(RP^{2n})$

 $v_2^s \alpha^k u^j$ in a 2-adic basis.

 $0 \le s < 8$

 $0 \leq k$

 $0 < j \leq n$

u is not Don's x_2 .

There is a $u \in ER(2)^{-16}(RP^{2n})$

which maps to $v_2^3 x_2$.

We use this u.

 d^1 is easy. d^3 follows from $RP^{2n-2} \rightarrow RP^{2n} \rightarrow RP^{2n}/RP^{2n-2}.$ Only have $d^{\{1,3,5,7\}}$ because even degree. After d^3 have $u^{\{1,2,3\}}$ and $v_2^4 u^{\{1,2,3\}}$ There is a known $d^7: v_2^4 u^{\{1,2,3\}} \to u^{\{1,2,3\}}$ Differentials are hard now, but not much left.

For $n = 0, 3, 4, 7 \mod 8$.

$$v_2^2 u^{n-1} \xrightarrow{u} v_2^2 u^n$$
$$v_2^3 u^n$$

$$v_2^6 u^{n-1} \xrightarrow{u} v_2^6 u^n$$

$$v_2^7 u^n$$

For $n = 1, 2, 5, 6 \mod 8$.

Element of interest:

$$x^2 \alpha^k v_2^5 u^n = \alpha^k u^{n+1} \neq 0.$$

 $KU^0(RP^{2n})$ has $u^n \neq 0$ and $u^{n+1} = 0$.

For $n = 0, 3 \mod 4$.

 $KO^0(RP^{2n})$ has $u^n \neq 0$ and $u^{n+1} = 0$.

For $n = 1, 2 \mod 4$.

 $KO^{0}(RP^{2n})$ has $u^{n+1} \neq 0$ and $u^{n+2} = 0$.

 $E(2)^{16*}(RP^{2n})$ has $\alpha^k u^j \ 0 < j \le n$.

Theorem 1. $ER(2)^{16*}(RP^{2n})$ consists of the elements $\alpha^k u^j$, with $0 \le k$ and $0 < j \le n$, and, when

n = 0 or 7 modulo 8, no others, $n = 1 \text{ or 6 modulo 8, } \alpha^{k}u^{n+1}$, $n = 2 \text{ or 5 modulo 8, } \alpha^{k}u^{n+1}$, and u^{n+2} , $n = 3 \text{ or 4 modulo 8, } u^{n+1}$, u^{n+2} , and u^{n+3} , 13 We have, when $n = 0,7 \mod 8$:

$$ER(2)^{16*}(RP^{2n}) \simeq E(2)^{16*}(RP^{2n})$$

Purely algebraically, we have surjections

$$ER(2)^{16*}(RP^{2n}) \longrightarrow E(2)^{16*}(RP^{2n+2})$$

when $n = 1, 2, 5, 6 \mod 8$.

Back to the axial maps.

When $n = 0,7 \mod 8$, top two are isomorphisms.

When $-k-2 = 1, 2, 5, 6 \mod 8$, bottom is surjection.

Now we mooch off of Don to show it is nonzero in the tensor product.

Theorem 2. When the pair $(m, \alpha(m))$ is, modulo 8, (2,7), (7,2), (6,3), (3,6), (7,1), (4,4), (3,5), or (0,0), then

 $RP^{2(m+\alpha(m)-1)}$ does not immerse (\nsubseteq)

in
$$\mathbb{R}^{2(2m-lpha(m)+1)}$$
.

When the pair $(m, \alpha(m))$ is, modulo 8, (4, 3), (1, 6), (0, 7), or (5, 2), then

$$RP^{2(m+\alpha(m))} \nsubseteq \text{ in } \mathbb{R}^{2(2m-\alpha(m)+1)}.$$

An improvement of 1 or 2 for half of the k's and 1/4 of the n's, so for 1/8 of the cases he deals with.

 $(m, \alpha(m)) = (6, 3) \mod 8.$

$$RP^{16+2^{i+1}} \notin \mathbb{R}^{20+2^{i+2}}$$
$$RP^{48} \notin \mathbb{R}^{84} \qquad RP^{80} \notin \mathbb{R}^{148} \qquad RP^{144} \notin \mathbb{R}^{276}.$$
$$(m, \alpha(m)) = (4, 4) \mod 8.$$

$$RP^{62+2^{i}} \nsubseteq \mathbb{R}^{106+2^{i+1}}$$
$$RP^{126} \nsubseteq \mathbb{R}^{234} \qquad RP^{190} \nsubseteq \mathbb{R}^{362}.$$

The pair (4,3) mod 8 gives $RP^{14+2^{i+1}+2^{j+1}} \nsubseteq \mathbb{R}^{12+2^{i+2}+2^{j+2}}.$ $RP^{62} \nsubseteq \mathbb{R}^{108} \qquad RP^{94} \nsubseteq \mathbb{R}^{172} \qquad RP^{158} \nsubseteq \mathbb{R}^{300}.$ $RP^{110} \nsubseteq \mathbb{R}^{204} \qquad RP^{174} \nsubseteq \mathbb{R}^{332}.$

Unfortunately, the tensor product is not enough.

For $E(2)^*(-)$ this last map is an injection from C-F 1964.

Nothing like that for $ER(2)^*(-)$.

Two kinds of problems.

First:

Perhaps image of $u^{2^{K-1}-n}$ is Z + xW, with Z going to non-zero in $E(2)^*(-)$ but Z + xW going to zero in $ER(2)^*$ (product).

These are all isomorphisms in degrees 16*.

We have Kunneth theorems for RP^{∞} for both $ER(2)^*(-)$ and $E(2)^*(-)$.

There is no xW. The coproduct is exactly the same for both theories.

This is very special to 16*.

 $2u +_F \alpha u^2 +_F u^4 = 0$

Next we need to show that our obstruction is non-zero when we map

But we have no map

$$ER(2)^*(RP^{2n} \times RP^{2^K - 2k - 4}) \rightarrow$$
$$E(2)^*(RP^{2n} \times RP^{2^K - 2k - 2})$$

21

Theorem 3. Let $m \leq n$, then $BP^*(RP^{2m} \wedge RP^{2n}) \simeq$ $BP^*(RP^{2m}) \otimes_{BP^*} BP^*(RP^{2n})$ $\oplus \Sigma^{2n-1} BP^*(RP^{2m})$ **Theorem 4.** Let $m \leq n$, then $E(2)^*(RP^{2m} \wedge RP^{2n}) \simeq$ $E(2)^*(RP^{2m}) \otimes_{E(2)^*} E(2)^*(RP^{2n})$ $\oplus \Sigma^{-16n-1} E(2)^* (RP^{2m})$ represented by (2-adic basis) $v_2^s \alpha^k u_1^i u_2 \quad 0 \le k \quad 0 < i \le m \quad 0 \le s < 8$ $v_2^s u_1^i u_2^j \quad 0 < i \le m \quad 1 < j \le n \quad 0 \le s < 8$ and

 $v_2^s \alpha^k u_1^j z_{-16n-17} \quad 0 \le k \quad 0 \le j < m \quad 0 \le s < 8.$

Because of the map $ER(2)^*(-) \rightarrow E(2)^*(-)$ we always have

$$\alpha^k u_1^i u_2$$
$$u_1^i u_2^j$$

for $i \leq m$ and $1 < j \leq n$.

For n = 1, 2, 5, 6 we also need $u_1^i u_2^{n+1}$.

By products, this would be

$$x^2 v_2^5 u_1^i u_2^n = u_1^i u_2^{n+1}$$

All we have to do is show that $v_2^5 u_1^i u_2^n$ is not in the image of d^1 or d^2 .

 d^1 is easy. d^2 is odd degree and we now have odd degree elements.

We show that $z_{-16n-17}$ is a real element and this prevents the d^2 hitting $v_2^5 u_1^i u_2^n$.