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E(n) is |vn| = 2(2n − 1) periodic.

ER(n) is |vn+1
n | = 2n+2(2n − 1) periodic.

ER(n)∗(X) x // ER(n)∗(X)

ρ
xxrrrrrrrrrrrrrrrrrrrrrr

E(n)∗(X)

∂

ffLLLLLLLLLLLLLLLLLLLLLL

The degree of x is −λ(n) = −22n+1+2n+2−1

x2n+1−1 = 0

For n = 1 |x| = −23 + 23 − 1 = −1 and x = η

because ER(1) = KO(2) and E(1) = KU(2).

For n = 1 periodicity is 23(21 − 1) = 8.

KU(2) = E(1) is 2-periodic. Grade all over

Z/(8).
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Compute KO∗
(2)

from KU∗
(2)

.

We know the answer: (Graded over Z/(8).)

Free Z(2) on 1 in degree 0.

Free Z(2) on β in degree −4.

Z/(2) on η in degree −1.

η31 = 0 ηβ = 0 and β2 = 4.

Only 3 differentials because x = η has x3 = 0.

Degree of dr is r + 1.

KU∗
(2)

is Z(2) free on vi
1, 0 ≤ i < 4.

Set v4
1 = 1. |v1| = −2.
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E1 = KU∗
(2) E2 = E3

1 Z(2) 1 Z/(2)

v1 Z(2)

d1=2

OO

v2
1

Z(2) βoo v2
2 Z/(2)

d3

OO

v3
1

Z(2)

d1=2

OO
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Facts about ER(2). |x| = −17. x7 = 0.

E(2)∗ = Z(2)[v1, v±1
2 ].

ER(2) is 48 periodic, so for E(2) we set v8
2 = 1.

(Recall |v2| = −6.) Index over Z/(48).

No v1 in ER(2)∗ but there is an α ∈ ER(2)−32.

α −→ v5
2v1. Replace v1 with α ∈ E(2)∗.

E(2)∗ is Z(2) free on vi
2αj, 0 ≤ i < 8, 0 ≤ j.

Compute ER(2)∗ from E(2)∗.
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αj αj

v2αj

d1=2

��

v2
2αj v2

2αj

d3=α

��

v3
2αj

d1=2

ZZ

v4
2αj v4

2αj

v5
2αj

d1=2

ZZ

v6
2αj v6

2αj

d3=α

II

v7
2αj

d1=2

ZZ
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As differentials get harder, there is less to deal

with!

We want applications.

James says: If RP2n immerses (⊆) in R2k then

there exists an axial map:

RP2n × RP2K−2k−2 −→ RP2K−2n−2.

Don Davis uses BP , or, really, BP 〈2〉∗(−).

BP 〈2〉∗ ' Z(2)[v1, v2].

There is no v2 torsion so we can invert v2 and

use E(2)∗(−).
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E(2)∗(RP2K−2n−2)

��

E(2)∗(RP2n)

⊗E(2)∗

E(2)∗(RP2K−2k−2)

x2K−1−n
2 = 0 maps non-trivially for

n = m + α(m) − 1 and

k = 2m − α(m).

Don shows RP2n * R2k for these n and k.
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To do same with ER(2)∗(−) we will need

ER(2)∗(RP2n).

E1 of spectral sequence is E(2)∗(RP2n)

vs
2αkuj in a 2-adic basis.

0 ≤ s < 8

0 ≤ k

0 < j ≤ n

u is not Don’s x2.

There is a u ∈ ER(2)−16(RP2n)

which maps to v3
2x2.

We use this u.
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d1 is easy.

d3 follows from

RP2n−2 → RP2n → RP2n/RP2n−2.

Only have d{1,3,5,7} because even degree.

After d3 have u{1,2,3} and v4
2u{1,2,3}

There is a known

d7 : v4
2u{1,2,3} → u{1,2,3}

Differentials are hard now, but not much left.
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For n = 0,3,4,7 mod 8.

v2
2un−1 u // v2

2un

v3
2un

v6
2un−1 u // v6

2un

v7
2un
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For n = 1,2,5,6 mod 8.

v1
2un

v2
2un−1

d5 66nnnnnnnnnnnnn

u // v2
2un

v5
2un

v6
2un−1

d5 66nnnnnnnnnnnnn

u // v6
2un

Element of interest:

x2αkv5
2un = αkun+1 6= 0.
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KU0(RP2n) has un 6= 0 and un+1 = 0.

For n = 0,3 mod 4.

KO0(RP2n) has un 6= 0 and un+1 = 0.

For n = 1,2 mod 4.

KO0(RP2n) has un+1 6= 0 and un+2 = 0.

E(2)16∗(RP2n) has αkuj 0 < j ≤ n.

Theorem 1. ER(2)16∗(RP2n) consists of the

elements αkuj, with 0 ≤ k and 0 < j ≤ n, and,

when

n = 0 or 7 modulo 8, no others,

n = 1 or 6 modulo 8, αkun+1,

n = 2 or 5 modulo 8, αkun+1, and un+2,

n = 3 or 4 modulo 8, un+1, un+2, and un+3,
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We have, when n = 0,7 mod 8:

ER(2)16∗(RP2n) ' E(2)16∗(RP2n)

Purely algebraically, we have surjections

ER(2)16∗(RP2n) −→ E(2)16∗(RP2n+2)

when n = 1,2,5,6 mod 8.

Back to the axial maps.
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ER(2)∗(RP2K−2n−2)

��

// E(2)∗(RP2K−2n−2)

��

ER(2)∗(RP2n) E(2)∗(RP2n)

⊗ER(2)∗ //⊗E(2)∗

ER(2)∗(RP2K−2k−4) E(2)∗(RP2K−2k−2)

When n = 0,7 mod 8, top two are isomor-

phisms.

When −k−2 = 1,2,5,6 mod 8, bottom is sur-

jection.

Now we mooch off of Don to show it is non-

zero in the tensor product.
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Theorem 2.When the pair (m, α(m)) is, mod-

ulo 8, (2,7), (7,2), (6,3), (3,6), (7,1), (4,4),

(3,5), or (0,0), then

RP2(m+α(m)−1) does not immerse (*)

in R2(2m−α(m)+1).

When the pair (m, α(m)) is, modulo 8, (4,3),

(1,6), (0,7), or (5,2), then

RP2(m+α(m)) * in R2(2m−α(m)+1).

An improvement of 1 or 2 for half of the k’s

and 1/4 of the n’s, so for 1/8 of the cases he

deals with.
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(m, α(m)) = (6,3) mod 8.

RP16+2i+1
* R20+2i+2

RP48 * R84 RP80 * R148 RP144 * R276.

(m, α(m)) = (4,4) mod 8.

RP62+2i
* R106+2i+1

RP126 * R234 RP190 * R362.

The pair (4,3) mod 8 gives

RP14+2i+1+2j+1
* R12+2i+2+2j+2

.

RP62 * R108 RP94 * R172 RP158 * R300.

RP110 * R204 RP174 * R332.
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Unfortunately, the tensor product is not enough.

E(2)∗(RP2K−2n−2)

��

E(2)∗(RP2n)

⊗E(2)∗

E(2)∗(RP2K−2k−2)

��

E(2)∗(RP2n × RP2K−2k−2)

For E(2)∗(−) this last map is an injection from

C-F 1964.

Nothing like that for ER(2)∗(−).

Two kinds of problems.
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First:

Perhaps image of u2K−1−n is Z + xW , with Z

going to non-zero in E(2)∗(−) but Z + xW

going to zero in ER(2)∗(product).
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ER(2)∗(RP∞)

��

// E(2)∗(RP∞)

��

ER(2)∗(RP∞) E(2)∗(RP∞)

⊗ER(2)∗ //⊗E(2)∗

ER(2)∗(RP∞) E(2)∗(RP∞)

These are all isomorphisms in degrees 16∗.

We have Kunneth theorems for RP∞ for both

ER(2)∗(−) and E(2)∗(−).

There is no xW . The coproduct is exactly the

same for both theories.

This is very special to 16∗.

2u +F αu2 +F u4 = 0
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Next we need to show that our obstruction is

non-zero when we map

ER(2)∗(RP2K−2n−2)

��

ER(2)∗(RP2n)

⊗ER(2)∗

ER(2)∗(RP2K−2k−4)

��

ER(2)∗(RP2n × RP2K−2k−4)

But we have no map

ER(2)∗(RP2n × RP2K−2k−4) →

E(2)∗(RP2n × RP2K−2k−2)
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Theorem 3. Let m ≤ n, then

BP ∗(RP2m ∧ RP2n) '

BP ∗(RP2m) ⊗BP ∗ BP ∗(RP2n)

⊕Σ2n−1BP ∗(RP2m)

Theorem 4. Let m ≤ n, then

E(2)∗(RP2m ∧ RP2n) '

E(2)∗(RP2m) ⊗E(2)∗ E(2)∗(RP2n)

⊕Σ−16n−1E(2)∗(RP2m)

represented by (2-adic basis)

vs
2αkui

1u2 0 ≤ k 0 < i ≤ m 0 ≤ s < 8

vs
2ui

1u
j
2 0 < i ≤ m 1 < j ≤ n 0 ≤ s < 8

and

vs
2αku

j
1z−16n−17 0 ≤ k 0 ≤ j < m 0 ≤ s < 8.
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Because of the map ER(2)∗(−) → E(2)∗(−)

we always have

αkui
1u2

ui
1u

j
2

for i ≤ m and 1 < j ≤ n.

For n = 1,2,5,6 we also need ui
1un+1

2 .

By products, this would be

x2v5
2ui

1un
2 = ui

1un+1
2

All we have to do is show that v5
2ui

1un
2 is not

in the image of d1 or d2.

d1 is easy. d2 is odd degree and we now have

odd degree elements.

We show that z−16n−17 is a real element and

this prevents the d2 hitting v5
2ui

1un
2.
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