Motivation

- Developing/Understanding Differential and Integral Calculus using infinitely large and small numbers
- Provide easier and more intuitive proofs of results in analysis
Filters

Definition
Let I be a nonempty set. A filter on I is a nonempty collection $F \subseteq P(I)$ of subsets of I such that:

- If $A, B \in F$, then $A \cap B \in F$.
- If $A \in F$ and $A \subseteq B \subseteq I$, then $B \in F$.

F is proper if $\emptyset \notin F$.

Definition
An ultrafilter is a proper filter such that for any $A \subseteq I$, either $A \in F$ or $A^c \in F$. $F^i = \{A \subseteq I : i \in A\}$ is called the principal ultrafilter generated by i.
Filters

Theorem

Any infinite set has a nonprincipal ultrafilter on it.

Pf: Zorn’s Lemma/Axiom of Choice.
The Hyperreals

Let \(\mathbb{R}^\mathbb{N} \) be the set of all real sequences on \(\mathbb{N} \), and let \(F \) be a fixed nonprincipal ultrafilter on \(\mathbb{N} \). Define an (equivalence) relation on \(\mathbb{R}^\mathbb{N} \) as follows:

\[
\langle r_n \rangle \equiv \langle s_n \rangle \text{ iff } \{ n \in \mathbb{N} : r_n = s_n \} \in F.
\]

One can check that this is indeed an equivalence relation. We denote the equivalence class of a sequence \(r \in \mathbb{R}^\mathbb{N} \) under \(\equiv \) by \([r] \).

Then

\[
*\mathbb{R} = \{ [r] : r \in \mathbb{R}^\mathbb{N} \}.
\]

Also, we define

\[
[r] + [s] = [\langle r_n + s_n \rangle]
\]

\[
[r] \ast [s] = [\langle r_n \ast s_n \rangle]
\]
The Hyperreals

We say \([r] = [s]\) iff \(\{n \in \mathbb{N} : r_n = s_n\} \in F.\) \(<\) is defined similarly. A subset \(A\) of \(\mathbb{R}\) can be enlarged to a subset \(*A\) of \(*\mathbb{R}\), where

\([r] \in *A \iff \{n \in \mathbb{N} : r_n \in A\} \in F.\)

Likewise, a function \(f : \mathbb{R} \to \mathbb{R}\) can be extended to \(*f : *\mathbb{R} \to *\mathbb{R}\), where

\[*f([r]) := [\langle f(r_1), f(r_2), \ldots \rangle]*\]
A hyperreal b is called:

- limited iff $|b| < n$ for some $n \in \mathbb{N}$.
- unlimited iff $|b| > n$ for all $n \in \mathbb{N}$.
- infinitesimal iff $|b| < \frac{1}{n}$ for all $n \in \mathbb{N}$.
- appreciable iff $\frac{1}{n} < |b| < n$ for some $n \in \mathbb{N}$.
Transfer Principle

Statement: A defined $\mathcal{L}_\mathbb{R}$ sentence ϕ is true iff $^\ast \phi$ is true.

Examples:

\[\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{Q}(x < q < y). \]

gets transferred to

\[\forall x, y \in ^\ast \mathbb{R}, x < y \Rightarrow \exists q \in ^\ast \mathbb{Q}(x < q < y). \]

\[\forall x, y \in \mathbb{R}, \sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y) \]

gets transferred to

\[\forall x, y \in ^\ast \mathbb{R}, ^\ast \sin(x + y) = ^\ast \sin(x) ^\ast \cos(y) + ^\ast \cos(x) ^\ast \sin(y) \]
We say a hyperreal b is infinitely close to hyperreal c if $b - c$ is infinitesimal and denote this by $b \simeq c$. One can show that \simeq is an equivalence relation. We define

$$\text{hal}(b) = \{c \in {}^\ast \mathbb{R} : b \simeq c\}.$$

Theorem

Every limited hyperreal b is infinitely close to exactly one real number, called the shadow of b, denoted by $\text{sh}(b)$.
Note that a real-valued sequence is a function from $\mathbb{N} \to \mathbb{R}$, so it extends to a hypersequence mapping $\ast\mathbb{N} \to \ast\mathbb{R}$.

Theorem

A real valued sequence $\langle s_n \rangle$ converges to $L \in \mathbb{R}$ iff $s_n \simeq L$ for all unlimited n.

Theorem

A real valued sequence $\langle s_n \rangle$ is Cauchy in \mathbb{R} iff for all m, n unlimited hypernaturals, $s_m \simeq s_n$.

Using these concepts, we can prove that a real-valued sequence s convergent in \mathbb{R} \Rightarrow s is Cauchy.
Pf: Suppose $\langle s_n \rangle$ converges in \mathbb{R}. Then by the first theorem, $s_n \simeq L$ for all unlimited n. So for all l, m unlimited hypernaturals, $s_l \simeq L \simeq s_m \Rightarrow s_l \simeq s_m$ because \simeq an equivalence relation. Then by the second theorem, $\langle s_n \rangle$ is Cauchy.
Continuity

Theorem

\(f \) is continuous at \(c \in \mathbb{R} \) iff \(\ast f(x) \simeq \ast f(c) \) for all \(x \in \ast \mathbb{R} \) such that \(x \simeq c \).

Example: \(f(c) = c^2 \). Let \(c \) be real and \(x \simeq c \). Then \(x = c + \epsilon \) for some infinitesimal \(\epsilon \), and

\[
\begin{align*}
 f(x) - f(c) &= x^2 - c^2 \\
 &= (c + \epsilon)^2 - c^2 \\
 &= c^2 + 2\epsilon c + \epsilon^2 - c^2 \\
 &= 2\epsilon c + \epsilon^2
\end{align*}
\]

which is infinitesimal because \(c \) is a real number and so it is limited. Thus, \(c^2 \) is continuous.
Another Application:

Theorem

Let f be a real function defined on some open neighborhood of $c \in \mathbb{R}$, and let $\ast f$ be constant on $\text{hal}(c)$. Then f is constant on some open interval $(c - \epsilon, c + \epsilon) \subseteq \mathbb{R}$.

Pf: Note that for some positive infinitesimal d, we have the statement $\forall x \in \ast \mathbb{R}$ such that $(|x - c|) < d$, $\ast f(x) = \ast f(c) = L$ for some L. This implies that $\exists y \in \ast \mathbb{R}^+$, $\forall x \in \ast \mathbb{R}$ such that $(|x - c|) < y$, $\ast f(x) = \ast f(c) = L \in \ast \mathbb{R}$. By transfer, we have the sentence $\exists y \in \mathbb{R}^+$, $\forall x \in \mathbb{R}$ such that $(|x - c|) < y$, $f(x) = f(c) = L \in \mathbb{R}$. Thus, f is constant on the interval $(c - y, c + y) \subseteq \mathbb{R}$.
Differentiation

Theorem

If f is defined at $x \in \mathbb{R}$, then $L \in \mathbb{R}$ is the derivative of f at x iff for every nonzero infinitesimal ϵ, $^*f(x + \epsilon)$ is defined and

$$\frac{^*f(x + \epsilon) - ^*f(x)}{\epsilon} \simeq L.$$

Example: Consider the real-valued function $\sin(x)$, where $x \in \mathbb{R}$. Now consider

$$\frac{\sin(x + \epsilon) - \sin(x)}{\epsilon}$$

for some ϵ an infinitesimal. Then by sum of sines, we get

$$\frac{\sin(x + \epsilon) - \sin(x)}{\epsilon} = \frac{\sin(x) \cos(\epsilon) + \cos(x) \sin(\epsilon) - \sin(x)}{\epsilon}$$
\(\cos(x) \) is continuous, so \(\cos(\epsilon) \simeq \cos(0) = 1 \) and so \(\sin(x) \cos(\epsilon) \simeq \sin(x) \). Thus,

\[
\frac{\sin(x) \cos(\epsilon) + \cos(x) \sin(\epsilon) - \sin(x)}{\epsilon} \simeq \frac{\cos(x) \sin(\epsilon)}{\epsilon}
\]

Also, \(\sin(x) \) is continuous, so \(\sin(\epsilon) \simeq \sin(0) = 0 \), so \(\sin(\epsilon) \simeq \epsilon \) and

\[
\frac{\cos(x) \sin(\epsilon)}{\epsilon} \simeq \cos(x).
\]

By the theorem, this implies that the derivative of \(\sin(x) \) at \(x \in \mathbb{R} \) is \(\cos(x) \).
Overview

- The Transfer Principle is key.
- Nonstandard Analysis makes analysis easier!