Do all problems. All problems are equally weighted. Show all details.

1. Let H be a proper subgroup of a finite group G. Show that G is not the union of all the conjugates of H.

2. Let \mathfrak{N} be the set of all nilpotent elements in a ring R. Assume first that R is commutative.
 (a) Show that \mathfrak{N} is an ideal in R, and R/\mathfrak{N} contains no non-zero nilpotent elements.
 (b) Show that \mathfrak{N} is the intersection of all the prime ideals of R.
 (c) Give an example with R non-commutative where \mathfrak{N} is not an ideal in R.

3. Let $f(x) = x^5 - 9x + 3$. Determine the Galois group of f over \mathbb{Q}.

4. Let $\lambda_1, \ldots, \lambda_n$ be roots of unity, with $n \geq 2$. Assume that $\frac{1}{n} \sum_{i=1}^{n} \lambda_i$ is integral over \mathbb{Z}. Show that either $\sum_{i=1}^{n} \lambda_i = 0$ or $\lambda_1 = \lambda_2 = \cdots = \lambda_n$.

5. Consider the ideal $I = (2, x)$ in $R = \mathbb{Z}[x]$.
 (a) Construct a non-trivial R-module homomorphism $I \otimes_R I \to R/I$, and use that to show that $2 \otimes x - x \otimes 2$ is a non-zero element in $I \otimes_R I$.
 (b) Determine the annihilator of $2 \otimes x - x \otimes 2$.

6. Let D_8 be the dihedral group of order 8, given by generators and relations
 \[
 < r, s \mid r^4 = 1 = s^2, \ rs = sr^{-1} >
 \]
 (a) Determine the conjugacy classes of D_8.
 (b) Determine the commutator subgroup D'_8 of D_8. Determine the number of distinct degree one characters of D_8.
 (c) Write down the complete character table of D_8.