Algebra Qualifying Exam, Spring, 2007

May 14, 2007

- 1. Prove that the integer orthogonal group $O_n(\mathbf{Z})$ is a finite group. (By definition, an $n \times n$ square matrix X over \mathbf{Z} is orthogonal if $XX^t = I_n$.)
- 2. Prove that no group of order 224 is simple.
- 3. Write down the irreducible polynomial for $\sqrt{2} + \sqrt{3}$ over **Q** and prove that it is reducible modulo p for every prime p.
- 4. Find the invertible elements, the zero divisors and the nilpotent elements in the following rings:
 - (a) $\mathbf{Z}/p^n \mathbf{Z}$, where *n* is a natural number, *p* is a prime one.
 - (b) the upper triangular matrices over a field.
- 5. Prove that the group $GL(2, \mathbb{C})$ does not contain a subgroup isomorphic to S_4 .