Do all problems. All problems are equally weighted. Show all work.

1. Let \(H \) and \(K \) be two solvable subgroups of a group \(G \) such that \(G = HK \).

 (a). Show that if either \(H \) or \(K \) is normal in \(G \), then \(G \) is solvable.

 (b). Give an example that \(G \) may not be solvable without the assumption in (a).

2. Consider \(\mathbb{Z}[^\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\} \) where \(\omega \) is a non-trivial cube root of 1. Show that \(\mathbb{Z}[^\omega] \) is an Euclidean domain.

3. Consider the field \(K = \mathbb{Q}(\sqrt[3]{a}) \) where \(a \in \mathbb{Z}, a < 0 \). Show that \(K \) cannot be embedded in a cyclic extension whose degree over \(\mathbb{Q} \) is divisible by 4.

4. Let \(E \) be a finite-dimensional vector space over an algebraically closed field \(k \). Let \(A, B \) be \(k \)-endomorphisms of \(E \). Assume \(AB = BA \). Show that \(A \) and \(B \) have a common eigenvector.

5. Consider the \(\mathbb{Z} \)-modules \(M_i = \mathbb{Z}/2^i\mathbb{Z} \) for all positive integers \(i \). Let \(M = \prod_{i=1}^{\infty} M_i \). Let \(S = \mathbb{Z} - \{0\} \).

 (a). Show that \(\mathbb{Q} \otimes_{\mathbb{Z}} M \cong S^{-1}M \).

Here \(S^{-1}M \) is the localization of \(M \).

(b). Show that \(\mathbb{Q} \otimes_{\mathbb{Z}} \prod_{i=1}^{\infty} M_i \neq \prod_{i=1}^{\infty} (\mathbb{Q} \otimes_{\mathbb{Z}} M_i) \).

6. Let \(G = S_4 \). Consider the subgroup \(H = \langle (12), (34) \rangle \).

 (a). How many simple characters over \(\mathbb{C} \) does \(H \) have?

(b). Choose a non-trivial simple character \(\psi \) of \(H \) over \(\mathbb{C} \) such that \(\psi((12)(34)) = -1 \). Computer the values of the induced character \(\text{ind}^G_H(\psi) \) on conjugacy classes of \(G \), then write the induced character as sum of simple characters.