Do all 8 problems. All problems are equally weighted. Time: 3 hours.

Show all work. In each solution, state any theorems you are applying and verify that the hypotheses are satisfied.

Notation: \(D = \{ z \in \mathbb{C} : |z| < 1 \} \)

1. Use residues to calculate the integral
\[
\int_{0}^{\infty} \frac{dx}{x^4 + 4}.
\]

2. Let \(f_n : D \to \mathbb{C}, n = 1, 2, 3, \ldots \), be a sequence of holomorphic functions on the unit disk \(D \) such that \(f_n^{-1}(0) = \{ c_n \} \), where \(c_n \in D \). Suppose that \(f_n \to f_0 \) uniformly, where \(f_0 \) is not constant.
 a) Prove that \(f_0 \) has at most one zero in \(D \).
 b) Can \(f_0 \) have no zeros? If so, give a necessary and sufficient condition on the \(c_n \) for this to happen.

3. State whether each of the following two statements is true or false, and give either a proof or counterexample for each.
 a) All holomorphic functions \(f : \mathbb{C} \setminus \{ 0 \} \to H \) are constant, where \(H = \{ z \in \mathbb{C} : \text{Im } z > 0 \} \) denotes the upper half plane.
 b) All harmonic functions \(h : \mathbb{C} \setminus [0, +\infty) \to [0, 1] \) are constant.

4. Let \(f : D \to H \) be a holomorphic map from the unit disk \(D \) to the upper half plane \(H = \{ z \in \mathbb{C} : \text{Im } z > 0 \} \).
 Suppose that \(f(0) = 3i \). Find the maximal possible value of \(|f'(0)| \).

5. Let \(X \) be the Banach space of continuous real-valued functions on \([0, \pi]\) that vanish at 0 and \(\pi \), equipped with the sup norm. Suppose that \(Y \) is a closed subspace of \(X \) where every element of \(Y \) can be written as a trigonometric polynomial, i.e., as a finite linear combination of the functions \(\sin(kx) \) and \(\cos(kx) \), for \(k = 0, 1, 2, 3, \ldots \). Prove that \(Y \) is finite dimensional.

CONTINUED ON NEXT PAGE
6. Suppose that f is a C^1 function on $[0, 2]$ and $f(0) = f'(0) = f(2) = f'(2) = 0$. Prove that for any $\varepsilon > 0$ there exists T_ε so that for all $t > T_\varepsilon$

$$\left| \int_0^2 f(x) e^{itx} \, dx \right| \leq \frac{\varepsilon}{t}.$$

7. Suppose that f_j is a sequence of L^2 functions on $[0, 1]$ with

$$\int_0^1 |f_j| \leq 1/j \quad \text{and} \quad \int_0^1 f_j^2 \leq 1.$$

Prove that f_j goes to zero weakly in $L^2([0, 1])$.

8. Suppose that X is a real Banach space and, for all $x, y \in X$, the norm $\| \cdot \|$ satisfies

$$\|x + y\|^2 + \|x - y\|^2 \leq 2\|x\|^2 + 2\|y\|^2.$$

Suppose also that $f : X \to \mathbb{R}$ is a linear functional with norm 1; that is,

$$\sup_{\|x\|=1} |f(x)| = 1.$$

Prove that there exists a unique point $x \in X$ with $\|x\| = 1$ and $f(x) = 1$.

2