1. Prove the following statement without using Ergoroff’s Theorem: Suppose \(\{f_k\}_{k=1}^{\infty} \) is a sequence of measurable functions defined on a measurable set \(E \), \(f_k \to f \) a.e. on \(E \) and there exists \(g \in L^1(E) \) such that \(|f_k| \leq g \) for all \(k \). Given \(\epsilon > 0 \), there exists a closed set \(A_\epsilon \) such that \(m(E \setminus A_\epsilon) < \epsilon \) and \(f_k \to f \) uniformly on \(A_\epsilon \).

2. Let \(f \in L^1(\mathbb{R}) \) and define \(E_\alpha = \{ x : |f(x)| > \alpha \} \). Prove that
 \[
 \int_{\mathbb{R}} |f(x)| \, dx = \int_{0}^{\infty} m(E_\alpha) \, d\alpha.
 \]

3. Let \(f : \mathbb{R} \to \mathbb{R} \) be a measurable function. Prove the following statement: There exists \(M > 0 \) such that \(|f(x) - f(y)| \leq M|x - y| \) for all \(x, y \in \mathbb{R} \) if and only if \(f \) is absolutely continuous and \(|f'| \leq M \).

4. (a) Prove that the operator \(T : L^2([0,1]) \to L^2([0,1]) \) defined by setting \(T[f](x) = xf(x) \) is continuous and symmetric (self-adjoint).

 (b) Prove that \(T \) is not compact.

5. Let \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) and \(f : D \to D \) be a holomorphic function. Prove
 \[
 \frac{|f(0)| - |z|}{1 + |f(0)||z|} \leq |f(z)| \leq \frac{|f(0)| + |z|}{1 - |f(0)||z|}, \quad \forall z \in D.
 \]

6. For \(t \in \mathbb{R} \), compute
 \[
 \lim_{A \to \infty} \int_{-A}^{A} \frac{\sin x}{x} e^{i\pi t} \, dx.
 \]

7. Let \(U \subset \mathbb{C} \) be an open set, \(f : U \to \mathbb{C} \) be a holomorphic function and \(z_0 \in U \). Prove that if \(f'(z_0) = 0 \), then \(f \) is not one-to-one in any neighborhood of \(z_0 \).

8. Prove that if \(f \) is an entire function and \(|f(z)| \leq a + b|z|^k \) for all \(z \in \mathbb{C} \) where \(a, b \) and \(k \) are positive real numbers, then \(f \) is a polynomial.