REAL ANALYSIS QUALIFYING EXAM, SPRING 2001

Instructions: Attempt to do all of the problems. Each is worth 20 points. All the measures involved are Lebesgue measure.

1.) Suppose that $\phi \in C_0^{\infty}(\mathbb{R}^n)$ has $\int \phi dx = 1$. If $\phi_{\varepsilon}(x) = \varepsilon^{-n}\phi(x/\varepsilon)$, prove that if $1 \leq p < \infty$ and $f \in L^p(\mathbb{R}^n)$ then $f * \phi_{\varepsilon} \to f$ in $L^p(\mathbb{R}^n)$. Prove that this is not true for $p = \infty$.

2.) Suppose that $f \in L^1(\mathbb{R}^n)$. Prove that for every $\varepsilon > 0$ there is a $\delta > 0$ such that if A is measurable with measure $< \delta$ then

$$\left|\int_{A}fdx\right|<\varepsilon.$$

3.) Recall that $f:[0,1] \to \mathbb{R}$ is lower semicontinuous if $\liminf_{x\to x_0} f(x) \ge f(x_0)$ for every $x_0 \in [0,1]$. Prove that if f is a nonnegative lower semicontinuous function then one always has $S_+(f,P) \to \int_0^1 f(x) dx$ as $|P| \to 0$ if $S_+(f,P)$ is the lower Riemann sum associated with a partition P of [0,1] and |P| is the smallest interval of the partition. Here $\int_0^1 f(x) dx$ is the Lebesgue integral of f.

Here, if $0 = t_0 < t_1 < \cdots < t_n = 1$, is the partition P, then $S_+(f, P) = \sum_{j=1}^n \inf_{x \in [t_{j-1}, t_j)} f(x)(t_j - t_{j-1}).$

Hint: To prove $S_+(f, P) \to \int_0^1 f(x) dx$ as $|P| \to 0$, it suffices to show that $S_+(f, P_n) \to \int_0^1 f(x) dx$ if P_n is a nested sequence of partitions whose lengths goes to zero.

4.) For which values of α and β does the following inequality hold?

$$||f||_2 \le ||f||_{4/3}^{\alpha} ||f||_4^{\beta}.$$

Prove your assertion.

5.) Let
$$K\in C([0,1]\times [0,1]).$$
 For $f\in C([0,1])$ define
$$Tf(x)=\int_0^1 K(x,y)f(y)dy.$$

Prove that $Tf \in C([0,1])$. Moreover, prove that $\Omega = \{Tf : ||f||_{sup} \leq 1\}$ is precompact in C([0,1]). Here, we are using the sup-norm $||\cdot||_{sup}$ on C([0,1]) and Ω being precompact means that every sequence in Ω must have a subsequence that converges with respect to this norm to an element of C([0,1]).