Real Analysis Qualifying Exam, Fall 2001

Instructions: Attempt to do all problems. Each is worth 20 points. All the measures involved are Lebesgue measure.

1.) Let \(f \) be a continuous function on \([0, \infty)\) such that \(\lim_{x \to \infty} f(x) \) exists (finitely). Prove that \(f \) is uniformly continuous.

2.) Let \(f \) and \(g \) be continuous real valued functions on \(\mathbb{R} \) such that \(\lim_{|x| \to \infty} f(x) = 0 \) and \(\int_{-\infty}^{\infty} |g(x)| \, dx < \infty \). Define the function \(h \) on \(\mathbb{R} \) by

\[
h(x) = \int_{-\infty}^{\infty} f(x-y)g(y) \, dy.
\]

Prove that \(\lim_{|x| \to \infty} h(x) = 0 \).

3.) Let \(\{f_n\} \) be a sequence of real valued functions in \(L^{4/3}(0,1) \) such that \(f_n \to 0 \) in measure as \(n \to \infty \) and \(\int_0^1 |f_n(x)|^{4/3} \, dx \leq 1 \). Show that \(\int_0^1 |f_n(x)| \, dx \to 0 \) as \(n \to \infty \).

4.) Let \(f \in L^1([0,1]) \). For \(k \in \mathbb{N} \), let \(f_k \) be the step function defined on \([0,1]\) by

\[
f_k(x) = k \int_{j/k}^{(j+1)/k} f(t) \, dt, \quad \text{for} \quad \frac{j}{k} \leq x < \frac{j+1}{k}.
\]

Show that \(f_k \) tends to \(f \) in \(L^1 \) norm as \(k \) tends to \(+\infty \).

Hint: Treat first the case where \(f \) is continuous, and use approximation.

5.) Let \(1 \leq p < q < \infty \). Which of the following statements (i)-(vi) are true, and which are false? Justify all the negative answers by a counterexample, but you do not have to justify the positive answers.

(i) \(L^p(\mathbb{R}) \subset L^q(\mathbb{R}) \).
(ii) \(L^q(\mathbb{R}) \subset L^p(\mathbb{R}) \).
(iii) \(L^p([0, 1]) \subset L^q([0, 1]) \).
(iv) \(L^q([0, 1]) \subset L^p([0, 1]) \).
(v) \(\ell^p(\mathbb{Z}) \subset \ell^q(\mathbb{Z}) \).
(vi) \(\ell^q(\mathbb{Z}) \subset \ell^p(\mathbb{Z}) \).

Justify your answer to the following question:
(vii) For which \(s \geq 1 \) is \(L^p(\mathbb{R}) \cap L^q(\mathbb{R}) \subset L^s(\mathbb{R}) \)?