3. Compute the area under the parametric curve $x = e^t, y = t^2$ for $t \in [0, 1]$.

4. Compute the arc length of the curve $x = 2 \sin t + 3, y = 2 \cos t + 4$ for $t \in [0, \frac{\pi}{3}]$.

5. Find a polar equation for the curve represented by the Cartesian equation $y^2 = x$.

6. Find a Cartesian equation for the curve represented by the polar equation $r^2 = 3\theta$.

6. Sketch the polar curve $r^2 \sin 2\theta = 1$.

7. $r = 3\theta$ is a polar curve. Compute the area of the polar region for $\theta \in [0, \pi]$.