Example 1. Determine if $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent or divergent.

Solution:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$$

Since $\frac{1}{x^2}$ is decreasing,

$$\frac{1}{2^2} \leq \int_1^2 \frac{1}{x^2} \, dx,$$

$$\frac{1}{3^2} \leq \int_2^3 \frac{1}{x^2} \, dx,$$

$$\frac{1}{4^2} \leq \int_3^4 \frac{1}{x^2} \, dx, \ldots$$
The integral test and estimates of sums

\[
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
\leq 1 + \int_1^2 \frac{1}{x^2} \, dx + \int_2^3 \frac{1}{x^2} \, dx + \int_3^4 \frac{1}{x^2} \, dx + \cdots
\]

\[
= 1 + \int_1^\infty \frac{1}{x^2} \, dx.
\]
Since \(\int_{1}^{\infty} \frac{1}{x^2} \, dx \) is convergent, the partial sum \(s_n \) is bounded. Also, \(a_n > 0 \) implies \(s_n \) is increasing.

Recall Fact 5: Every bounded monotonic sequence is convergent.

Thus \(s_n \)'s limit exists, i.e. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is convergent.
This example shows us that the convergence of $\int_1^{\infty} \frac{1}{x^2} \, dx$ implies convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

This can be generalized to a large class of series:
The integral test Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) \, dx$ is convergent.
Example 2. For what values of p is the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent?

Solution: Use the integral test. We know from Chapter 7.8 Indefinite Integral that $\int_1^{\infty} \frac{1}{x^p} \, dx$ is convergent if $p > 1$, and divergent if $p \leq 1$.

Conclusion: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if $p > 1$, and divergent if $p \leq 1$.
Example 3. Determine if the series \(\sum_{n=1}^{\infty} \frac{1}{n^3+4} \) converges or diverges.

Solution: Use the integral test.

Consider \(f(x) = \frac{1}{x^3+4} \). It is positive, continuous and decreasing. Why is it decreasing? Because \(x^3 + 4 \) is increasing.
The integral test and estimates of sums

Now

\[\int_{1}^{\infty} \frac{1}{x^3 + 4} \, dx \leq \int_{1}^{\infty} \frac{1}{x^3} \, dx. \]

By Chapter 7.8, the indefinite integral on the right hand side is convergent. Thus \(\int_{1}^{\infty} \frac{1}{x^3 + 4} \, dx \) is also convergent. So the series is convergent.