We prove by induction on \(n \). First notice that since \(a_1 = 1 \leq a_2 = 5/2 \leq 4 \), the sequence is increasing and bounded by 4 at \(n = 1 \). This fulfills the base case.

Now assume \(a_n \leq a_{n+1} \) and \(a_n \leq 4 \), then \(a_{n+1} = (4 + a_n)/2 \leq (4 + a_{n+1})/2 = a_{n+2} \), and \(a_{n+1} = (4 + a_n)/2 \leq (4 + 4)/2 = 4 \). This proves the induction step.

Since the sequence is increasing and bounded from above, by monotone converge theorem, the sequence converges to a limit, say \(\lim_{n \to \infty} a_n = L \). Then \(L \) satisfies \(L = (4 + L)/2 \). Solving for \(L \) gives \(L = 4 \), hence the sequence converges to 4.

This is a geometric series with \(a = 4/3 \) and \(r = 1/3 \). Since \(|r| < 1 \), the series converges to \(a/(1 - r) = 2 \).

Since \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1 \), the series diverges by the divergence test.

This is geometric with \(a = 3/x \) and \(r = 3/x \). This converges when and only when \(|3/x| < 1 \), i.e., \(3 < |x| \). If so, the limit is \(a/(1 - r) = 3/(x - 3) \).

By the integral test, it suffices to determine if \(\int_1^\infty \frac{1}{x \ln x} \, dx \) converges. But using \(u = \ln x \), we have

\[
\int \frac{1}{x \ln x} \, dx = \int \frac{1}{u} \, du = \ln u = \ln \ln x
\]

Thus the indefinite integral evaluates as \(\lim_{b \to \infty} \ln \ln b - 0 = \infty \), hence the series diverges.

Since \(0 < n^4/2 \leq n^4 - 1 \) for \(n \geq 2 \), we have \(\frac{2n}{n^4} = \frac{2}{n^3} \geq \frac{n}{n^4 + 1} \geq 0 \). By the integral and p-test, \(\sum_{n=2}^{\infty} \frac{2}{n^3} \) converges, and therefore by comparison theorem for series, the original series converges as well.

Since \(0 \leq \frac{3^{-n}}{1 + 3^{-n}} = \frac{3^{-n}}{1} \), by comparison theorem, it suffices to prove \(\sum_{n=1}^{\infty} 3^{-n} \) converges. But this is a geometric series with \(r = 1/3 \), hence it converges, and therefore so does the original series.