SECTIONSS Conic SECTIONS IN POLAR COORDINATE

M L= 2 e LA TA832 g - {esd2 I 22812 gf RV~ Ty r) i ded® gg - RV 46
Ly / e

= VBT g < '9j§'-:»g’§(e4k1}

B L= [0 d = JZ Vwﬁ%w;w&:j; VI 467 gg

fﬁ‘l(gw;t 1 = FE% + 4
w,jo ) f \f .

Now let ¢ = g% ... 4, 30 that dy = 2838 55?558

j and
jﬁzwg VE TG a6 - lh +4 1\ idu = 1, g[uaxz]:ffrz*‘i} _ %g JE 132 _ 43;25 . S{(ﬁ_g 1y
% L= [* VI b - JVE Tz fg 14 %m(a + \,/??Tf)?j”
=TVAR ST din(2r 4+ ERT T 1)
3. The curve r = 3sin 29 is completely traced with 0 < 8 < 2, ! r=3sin3g
¥+ (dr/de)®? = (3510 26)% + (6 cos 26y

0.0

=0, 2%

L= " Vosin® 2 36 e 55 d6 = 29.0653

38. The curve r = 4gin 3 is completely traced with < 6 < . r=4sin3g
7 {dr/d8)? = (4sin36)% 4 {12c0830)% =y

L= fa‘” V 165in® 36 + 144 cos? 30 de = 2672098

8.5 Conic Sections in Polar Coordinates

1. The directrix ¢ = 6 is above the focus at the OTIgin, 50 we use the form with “ + ¢ sin g»

and Figure 8) = . €€

bresing " 10 TG08 T T enE

in the denominator {See Theo;

g
o
el
3+

2. The directrix ¢ - 4 is te the right of the focus at the OTIgin, 36 We use the form with «

a parabola, so an Squation g p == 55 TR T S e
T+ecosp 1 +leosd 14 cosf

3. The directrix ¢ — =55 to the left of the focus at the origit, 3o we use the form with  — ¢ cos g 10 the denominator
] ed i.5 15
oo e s i st
l—ccosd ik——caqé 4~3<.058

4. The directrix ¥ = —2is below the focus at the origin, 5o we usc the form with *
o cd 2.2 g
I—esing lmﬁsm?? T 1 Zsms

—£sinf” in the denominator,
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£

relationships for 3 righe triangle and the identiny sinlo = 2sin oo cos o, we coniinue:
Ll & -

A= d8r - 060 - 2% X122 gy g 5 ‘; — 16

= 487 — Phia - G4

= 487 ~ 48 Y12 - 96gip Hx 57 ) 20416 w?

?8. The curves intersect at the pole since (0. £} satisfies 30. Clearly the pole ties on hath curves,
== cosd and (0,0 satisfes 5 = 1 cosé. Now $in3f = cos360 = tandf =1 =

cost =1 —cosf = 2eosH ] n 3= —nn |n any integer] =

; H 5 S . T g — —_ 3n .
cost = & = f=zoril = TEf = 0= or T o the
{1 By three remaining intersection oints are
the other intersection points are (£.%) and (4, = g p
( ]
J

The pole is 2 point of intersection, 32. Clearly the pole is a point of intersection,

Sl =320 = 256 cos e L T =
SME (1 —2cosd) = 0« 26 = % = 307 Isince sin 20 and <08 26 must be

sitd = 0 or cos# = L= positive in the equations] — ¢ — T nr =
i T (3 VE 2m f e %o d 5 So the curves also intersect at
Pelmg - = | :-e}f‘”ﬁ{ﬁz‘-?}
tby symmetry) are the other intersection points.
et m RS m‘“““—\— ~
. VI3 — (Geocd i df = Io TV HSINT B ot ;48
=307 df = 7
8 cheek, note that the ¢ circumierence of 2 cirele with radius 2 is 2 = g, andsince f = G0 5 o = traces out 5 of the

rele {from & = Ot 8 = 2y,
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M 3eosf =14 cosh & cosh o i

il
Sy
&

ot

5

i~

@

1

v

2

#

s

f

—

I

{3+ dcos 2~ 2cos Byt = 360+ 2sin 20 — 25in gi r=3cos g

— ~
:7-’*&/@*« Vi ==
22, To find the shaded aren A, we'll find the area 4. inside the curve
r =12 sin @ and subtract 7/ since r == 3sinf is a circle with

radiug £,

=3 [+ asing s o —cos26)]dé = L [P0S4 g

BA=2[ Lt = [T £(1 — cos26) dp

g

= Llp 2 1T e SO —
M—ﬁgmzsirzﬁﬁjﬂ ’“‘E;(a_z 1} —{®-0
P P |
Tgn 4

24. v = 5in 24 takes on both pasitive and negative values.

sind = £sin20 = £2sin8 cosh - sinf {1+ 2cosd) =

e

From the figure we can see that the intersections oceur where cos 8 = +

or f == Z and 3«5

P

fTA3

=SS cos 28y a8 4 7

n

25 sin 20 = o520

w8

A= &2  fsin26d0 = 5 [

{1 —cosdfd

B M—ji/]:i—’?*l
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SECTION 8.4 AREAS AND LENGTHS IN POLAR COORDINATES

16. ; UL (4503070 = 8 [ sin® 30 g

ey j N T
A= redsmds 0 BT
e ¥ e 240 ‘i
e s L CO8 {}9_; i ;
= 410 — % sin 64 = &

i

17

This is a limagen, with inner toop traced
P i 3 sin 6 (recty

out between ¢ = I2 ang Uz

[found by solving ¢ = .

w7 l
& E

R TE
b=z

(L sing - dsin? 6) d = [;

rdsing+4. 501~ cos 26} df

= {8—4{:@56-%2&—&1)25}; — (Z=) - (’3}2’3—&2v’§~ %E) ]

18. To determine when the stropheid » = 2cosé — sec & passes

 through the pole, we solve r = 0 = 2 cosd - W e
cos
200876 — 120 = cos?d = i = sl = 3:713 =

(L

f=Forf =4 for0<f<nwithy £

A2 _f;;“ £(2cos8 - sec§)2 d — S dcos® - 4+ sec? Ay db

= [T {4 51+ cos26) — 4o+ sec 8] df -

=2+ 2¢0520 + sec? 8) @

JO
' 98 . e — o : o ¥ ®
T s b tan ] 0 s (2 w12 1) 0= 2 z

19 488 =2 & sind= i

T f= or Qé: {for 0 < 8 < 27, We'll subtract i or=4sind

the unshaded area from the shaded area for 7 /6 < # < /2 and double that value,

A=2 [T L4sin6)2dg 2 K 3@%a8 = 2 [7/2 Liiasing)? - 2% 48

NER d. . A
T} =3 7;;5—2\;-3

Wol-sinb=1 = smbe( = g Oors

ey

Ul —sing)? - 1 4p =

sin ¢ - Zsin & i

Tt 00828 - dsind) dp

# i 1430 20 4 deos Y77 by e
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%}

1. One-sixth of the area lies above the p

t

olar axis and i3 hounded :
By the curve »

Zeos3F ford e Din g - 76,

cos 3% g o

0082w cos” 28

(4--deoos2na i o Lcos 4t 4

1iap :
= 550 - 2ein 26 - x

= dsingl + e gog

501~ cos 126)] gp

=% ‘/;T{Ei 451068 — 2epg 126} o4

]

N S Os
208 B8 - L ain 19917
£ cos 6  8in 1‘.}_..@

67 =5 =01~ (0= 2 0} = 3x

A= [T E(2508 - 3sin9e? gy 2 f{:ﬁd $(28008 £ 39012 gy

= [ s 6 - 126004 sinog G012 083 4o

= jﬂwz 2(? OS2+ 12 Licos(d - g cos{d + 94} {1 cos ik

&
fintegration khy parts could be used for [ sin g win ou <

= 20528 5 GroskE — 6 cos 106 & ‘:— R

TSR S8 L sin 106 - Lain1sei 7 L R

The shaded Tnon i« Taced out from # w 1p 4w o

|3

A (7 7 2648
Ea
T2l - cos 48 40
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9.4  Areas and Lengths in Polar Coordinates

=3 175200 - cos 26 df =

= B L lgpdr oo 32wt il =ifz W8N a2 A
TALE RSy oy oS = g0 3( ‘“,(\3 2)‘“ VR
4r=Vnb 0<d < A= 7L Vima) do o (" iemodg - | Scostl =4 el
r=vsing, 0< <. A== Gg\v‘,m/ @ _f_ggsm = —geost =444

Sr=0.050<x A= [T167d0= L] = L5

6. 7 =1 +sind,

raf

L L8< T

A= 7030 +5inb)? dd = 1 5 [1a(1+ 2806 + sin? 3)d9»~~fT 1+ 2sind+ (1~ cos26)] a8

[ M

%igv2cos€+%9wésm29jﬂ,ﬁ%awhrow( —0+F-0)] = (A 2y =iy

T.r =4+ 3sinéd, S S z.

A

ﬁ,.,r/?

= T, HA+ Bsin6)2dp = & [T {16 + 245in 6 + 9sin® 4) d6

Il

t\.‘JI?-—‘

fm_,z(lﬁ +9sin®0) d0  [by Theorem 4.5, 6(b)]

—,—,2.—

(1646 3(1 - cos20)] df by Theorem 4.5, 6(a)]

l\ﬂ’""

= Jr{-*(-gw ~ $eos20) df = [0~ $5in20]7% = (417 _g) _ (g gy = 4z

H in

Bor=sindd, 0<0< 5 A= " L1sin®20d0 = [77* 11 — cos80) dp — (50~ s sin8e] 7" = &
8. The curve »* = 4 cos 28 goes through the pole when 4 = 7/4,
so we’ll find the area for 0 < @ < = /4 and multiply it by 4. NN
A=a [T 420 = 2 [T (dc0s 20) 40 = 8 [ cos 26 48 -
10. Tartd = [T 1301 4 cos 6% dp (.2)
= % jf il Zeosl 4 cos? &) de
(4,0
= 2T 2eesb + 21 + cos 26)] 4o -
ER: o5 i AL
= Efﬁ = 25ind - Es,m?!;?m = E
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wiynd. From the graphs, it seems that when » is even, the number of loops in the curve icalled a rose} is 2n, and when

s'0dd, the number of loops is simply = This is because in the case of n odd, every point on the graph is eraversed fwice,

sinnf if 718 even

{8 + )] = sinnd cosn + cos né sinng = ) .
—sinnd if nis odd

rio= 2 n=23

f o= 4 ez h

graph of v = |sin n#; has 2n loops whether » is odd or even, since rif 4w} = r{f).

ORI

n = n=3 noe=d n=13

csinnd,  We vary n while keeping c constant at 2. As n changes, the curves change in the same way as those in

5¢ 63: the number of loops increases. Note that if n is even, the smaller loops are owtside the targer ones; if 1 is odd,

we vary e while keeping n = 3. As ¢ increases toward U, the entire graph gets smaller {the graphs below are not to scale)

e smaller lotps shrink in refation to the farge ones. Al ¢ = —1, the small l6ops disappear entirely, and for —1 < ¢ < j

Haph Is a sunple, closed curve (ate = Gitis a circle), As ¢ continues to increase, the same changes are seen, but in reverse

innd = 14+ csinndf — 2), so the graph for ¢ = 1y is the same as that for o

= -0, With a rotation
gh 7. As ¢ — o, the smaller |

cops get refatively closer in size to the large ones. Note that the distance between the
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Note for Exercises 57~ 60: Maple is able to plot polar curves using the polarplot command, or using the coords=polaroplionma eQular
plot command. In Mathemalica, Use PolarPlot. in Darive, change to Polar under Options State. I your graphing device cannot pigt
pafar equations, you must convert fo parametric equations. For example, in Exarcise 50 » — cosf = [2 ~ 5sin{6/6) cos b,

Y =rsind = (2~ 5sm(6/6)] sin g,
57, 0w @™ 2oos(46),
The parameter interval is 10, 27,

3.5

E

58, r == 2 - Ssin(d/6),

The parameter interval is [~ 6, 67,

..

61,

1.4

|
o

(’“"MW‘“""““W““—”WW

~8

Fre=1-+sing
Fr= 1 sin( -

*r=l+s'zn(ﬁ‘~'f}

58. 1 = sin®(46) + cos(44),

The parameter interval is [0, 27

.. : A
-2
60. r == cos(A/2] -+ cos(8/3).
The parameter interval is [~ 67, 677).

It appears that the graph of r = 1 -+ gin (8 — Z) is the same

shape as the graph of r == 1 + sin 8, but rotated counter-

}

clockwise about the arigin by &, Similarly, the graph of

iy chiyg

T =14 sin(f - —3"3) isrotated by . In general, the graph of
o f{f - ) is the same shape as that of r = F(8), but rotated
counterciockwise through o about the origin. That is, for any
point {ro, 8y} on the curve r = f(#}, the point (ro, 85 + « ) is on
the curve 1 = f{f — o, since rg = f{fy) = Flte + o) — o,
rom the graph, the highest points seem to have u == (0L77. To find the exact
vatue, we solve dy/df = 0.y = r&ind = sin 9 sin 26 e
dy/df = Jeinf cos 26 + cosé sin 24

= 2sind (2cos” 6 ~ 1)+ cosd (2sinf cos ) = 2sin 6 (3eas? § — 1

In the first quadrant, this is O when cos § = e

.3 3
4= 28in" Heosf = 2. 4




Fom e - sy any mfgger] = Yo
el cosfi ~ & sind w ¢” foosd — SR =l w o sind w posd o T
Looany wteger] = vertical rangents ar s

=h g wn o OGRH T Qo8

ol Soosbl oy o= orsind e snf il S eosd)

53, 1 o= 0t

L= cos8ycos @~ sin 6 = Zeos® 4 - cosd

7o A korizontal tangent at (5

- 2cosb ) R e T

e ) sind - cos B osinf = - sin 8

when # = x, since |

54, Bv differentiating implicitly, /% = sin 24 ==
3 £ 1m0 :

v lde = (1705 008 28, 50

iy
e

1 N y
=~ {cos 26 sin d
-

Thisis O whensiidd = 0 =

; S

tangenis at ( Y g

-, so there are verts

s ar (

woasint = beosd = pY oo grsind o Brcos s

3 N sy 2
i e TRV 2

joand thisis ac

o

Ceer

Fese curves are clrcies which Intersect at the orfgin and ot | = 1At the origin, the first cirele has a horizontal

uiar here. For the first cirele (0 =

ant and the second a vertical one. s¢ the ngenis are perpers

b PETT A E ey - i3 . Lo £
Soaind cosf o T - s

= ¢ at £ = i %

f TOF IRE SOCONG Ot {1 [N

~a a6 = o so the tangent is honzontsl and again the tangents are perpendicular,
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[y

=]
|

i

sl

14725 This equation must correspond to one of 11 1 or VI, since these are the only graphs which are bounded. In

e

et imust be VE since this is the only granh which is completed afier a rotation of exactly 47

13, This equation must correspond o F1L since this is the only graph which is completed afier a roration of

{t) r = oseci 360, This must correspond w IV, since the graph is unbounded at 8 = I,

=, and so on.

time & moves through an interval of 277, the same basic shape is repeated (because of the periodic sin  factor) but it gets
larger each time (since # Increases each time we go around.
fey r o= 1 £ cos 5. This corresponds 1o 11 sinee 1t is bounded. has fivefoid rotational symmetry. and takes only one takes

orly one rotation through 27 10 be compiete,

{f1 r == 1/4'8. This corresponds to L since it s unhounded at & = 0. and » decreases as 4 increases: in fact r — Gas f —

i LA A i 1Y fij o ‘_

dy  dyddd 2. 2sind cosfl LA

de dbeidi cos -2

- sin@isind =

pamd-sind s psmreosf = (2 sinficosf y = rsinf =

dy s

el o Al (2

‘8 {2 —sin®icosd ~ sin i~ cos ) 2eost — 2sinf cos b 2cosf — sin 20

s —sind) = cosfl—cosdl | —Osind -sint 0 —cost 0 —2sind —cos 24

F)‘ - sinf -+ Heosd
6’2 - cosd — fFeind

o
LS S £ . - " o it =] R Y
powm GO0 e o v e0sf e Joosf : =

L Se the tangent is horizontal
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40 r o= 1+ Zons(d/2)

.

41, For# = 4, . and 2w, r has its minimum valve of

about 0.5, For§ = Z and 22, v atrains its maximum

value of 2. We see that the graph has a similar shape

ford <@ Swandw <6 < 2,

42,

43 = rrosf = {4+ 2gec Hreosf = 4cosf + 2. Now, 7 —» oo =

4+ 2se08) — 00 = § (2} ord — (22)7 (since we need only

cansider 0 < 8 < 27), 50 Him » = ip {deosd -+ 2) = 2. Also,

LA s o] gﬁ.ﬁj‘ 8-

T30 = (44 2sec) o mno = s {(F)7 ord— &

so lim xe= lim [4eosf -2 =3 Therefore, lim 2 =2 =
o fmizr : oo .

&= 2 is a vertical asymptote.

44. The equation is (27 + 4233 = 4®y*, but using polar coordinates we know that
quatl s ¥ gp

A

' =t and x e roos 8 and g = rsin g, Substituting inio the given

2

; 3 200 win? g 1 cors? g cin? .
equation: #” = 4% cog® 4% sin g o= o loos™ 8 sin 6 =

remZoosdsind = Lsin 0 poa Lain 26 is sketched ar right,

ptote we must prove Hm o= 1.

) 3 75 £y PR - . S -
Wi tantioos & = sin® 8, Now, v = 20 = siné tand — s =

b o= fim sin®0 =1 A0 T~ =00 = sind tand o e
¥ 0 oz Fi1e

._
.
i
i

ot

=

sin® @ == 1, Therefore, lim
- T IR
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. o= gin 24 3.7 =2cos38

i

33 r = Zcosdé

_:1;\/ T 2R

35, r? = dcos 20 3. 7% = sin 26

AW/

} 27 8
i

3. v = 2eos (£6) r

. 2 s
o e Toos 26 Gz £T H 2
i (\ a"
Aop L 3w
3+ (}’/ i:ﬁl T;"
i ) 3
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9. The region safisfving @ < r < 4 and 0.2<r <5, 3r/éi<d<5En/4
- /2 < 8 < /6 does not include the circle

7 = 4 nor the line § = 16’3.

1. 2<r <y, 12 -1 <r <1,

g2

2

13, r=3sin8 = rP=3sinf o 24P =3y o 22+ {y~ 3" = (2)*, a circle of radius £ centered at (0, 2).

The first two equations are actually equivalent since 7% = 3rsinf = rr-3sinf) =0 = r=0orr:=3sinf. But _

7 = Jsin § gives the point r = 0 {the pole) when § == 0. Thus, the single equation » = 3sin @ is equivalent to the compound
condition {r == G ot r = 3sinf).

Wor=2sinf+2co88 = 7%= 2rsind+2rcosd & z° +yt =y & (% — 2z + D+ ~2y+ 1) =2
e (z- 1%+ {y— 1) =2 The first implication is reversible since r* = 2rsin# + 2rcosf = = Gor

= 2sin§ + 2cosf, but the curve v = 2siné + 2 cos § passes through the pole (r = E}E when 6 = — T, 50

r == Zsind + 2 cos § includes the single point of 7 == 0, The curve is a circle of radius v/2, centered at {1,1

B r=cscd & r= i < vsind =1 < o= 1,ahorizontal line | unit above the r-axis.
sin _ . .
sin é i . : ey ; 2 i
16. r = tanf sech = —5F T Teos §=sinf < (reesf® =rsing ¢ 27 =y, a parabola with vertex at the
o

origin opetilng upward. The first implication is reversible since coz 8 = 0 would imply siné = r cos® § = 0, contradicting the
fact that cos®™ @ + sin® 8 = 1,

2 cost
- = — ot cscd,
sin® g

T ae=—y & rosf=-—r"sin®¢ & cosf=-rsin?d = r=

Boz4y=9 & rcosftrsinf=9 < r=9/cosf+sinf).
19 5% +4" =22 & P =2rcosh & 1P Zercosf =0 e r{r—Zecosfi =0 < r=0or=2ccosd

r =0 s ingluded in v = 2ccosf when 6 = £ + ni7, 5o the curve is represented by the single equation r = Zccosé.

-5

0.2 -y =1 o (reosf —(reind? =1 < Pleos’f —sin® 6 =1 © leos2W =1 = % —secif

T B



SECTIONS.3 POLAR GCOORDINATES

i (m (b) {c)
{3.7) (272,47
\% iz
T 3
'\2
v a§
|
I
T =3c08 £ =30} = Oand z=2vZcos i
y=3sing =3{1) = 3 give us =9 B(W%)xmgaﬂ{i T=—leosf = -
the Cartesian coordinates (0, 3). oy ) y=-lsing =~
[T 2ain ¥5 o : o "
give us {—2,2).
4. (1) {0y l {c) |
i 2 .
!2"‘1; . ) /L\}.T f
N = /AR
U asm \F/
]
€= 2cos = = deos3r = —4 and = —2cos(~ 1) =
o o e ¥ = 4sin3r = 0 give -
y = 2sin I = /B give v ° s andyzuwQsin(w%
. us {4, 0], N
us (~1,v3}. giveus (v3,1),

S @r=lady=1 = r= /{7773~ VvZand § = tan~'($) = - Since {1, 1) is in the first quadrant, the poi
coordinates are (iy (v, T} and (if) (-v2, 22y

(za)zmo\/’anéyzlz = opoe {2%_“) {2 = V1244 = /15 = 4 and
8 = tan~ i(mz_\z/__s_)m tanﬁl(‘.m:%) = —&. Since (23, 2} is in the fourth quadrant and 0 < 9 < 27, the pole
coordinates are (i) | 4,4 and (in) (—4, 223,
8 (@) {2y} = (-1, ~V3},r = VIF3=2tand = y/v = I and ( (.} is in the third guadrant, so0 & = i
The polar coordinates are (D (2, %) and (i) (»~ 3.
() (o, 4) = (~2,3),r = W = V13, tanf = y/z = =2 and (z, y) is in the second quadrant, so § = tan—! (%
The polar coordinates are {i) {V13.8) and (i) (~13,6 + =

7. The curves r = 1 and r = 2 represent circles with center O and radii L v /3 <8< 2%/3
fand 2. The region in the plane satisfying | < 7 < 2 consists of

both circles and the shaded region between thers in the figure.
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a-axis of the initial invoiute path. {This corresponds to the range
-7 £ 8 < 0.) Referring to the figure, we see that the tofal grazing area

is 204; + Ay}, As is one-quarter of the area of a circle of radius #r, so

= it we will compute A; + A, and then subtract

4

Ay =1

Az = 2777 0 obtain A4,

To find Ay + Ao, first note that the rightmost point of the involute is

{—} r.#). {To see this, note that dr/df = Owhen & = Gor 5.8=10

. i
N N - f [—r,wm‘}i
corresponds to the cusp at (r,0) and 4 = F comresponds to {7, )] i

The lefimost point of the involute is (—r, wr). Thus, Ay + Ag o= 7% ydyr — f;;oz ydn = ffxx ydz.
Now yde = »(siné — #cos 816 cos § df = r¥{Fsiné cos# — 82 cos? 840, Integrate;

(/v [yde = ~Heos? o — (87 — 1) simbeosd — £6° + 16+ ' This enables us to compute

A+ As =2 —Beost g (0%~ U)sinfeosh — 10° + 1g1°
b / & 27 i

L

: ) FAL AN o 1.32 : : ; = (LB 1 3.2\ _ 5 5
Therefore, 4; = {4 + A3} — A, = §7777, so the grazing area is 2(A; + A3) = 2{2wr® 4 3758 = gmerd

9.3 Polar Coordinates

1. (a) By adding 27 10 Z, we obtain the ) (-2, %) (e} (3,2
point {1, 22). The direction 3.2) l
opposite & is %L, s0 (-1, 48 js a .ﬂé\\?d
point that satisfies the r < 0 7 1

requirement.

m‘] 5

<

P ecit S

2 (&) (3,0}

o
=

(3,2 2m) (3,2 +x)

) (2.-3) © (~1,~5)

[
(15
—
o,

i
ot
e Tl

34
S



5.

52,

53.

SECTION 9.2 CaiCuius WITH PARAMETRIC CURVES

{a) Notice that 0 < ¢ < 97 does not give the complete curve becayse
2{0) 3% 2{27). In fact, we must take £ & - (0. 47} in order to obtain the
complete curve, since the first term in each of the parametric

equations has period 27 and the second has period

the least commaon integer multiple of these two numbers is 401,

{b) We use the CAS 1o find the derivatives da/dt and dy/dt, and then use Formula | 1o find the are length. Recent ver

Maple express the integral j;’ Vide /A [dy7dte dt as 881 (2V21), where E¢ (] is the elliptic integral

ITER
i ot and 4 is the i imaginary sumber 1. Some earlier versions of Maple {as well ag Mathematica) ¢
SO VL~

do the Integral exactly, so we use the command

evalf {Int (8Qrt {Qiff (x, ;" 2+dif iy 172y rap, SA*PIY Y o estimate the length, and find that th

length is approximately 294.03. Derive's Fara_avc_length function in the atility file Int _apps simplifies the

integral to 11 f; / dcost cos{ 8L} — 4uiny sin(H4) + 54,

(a It appears that as ¢ - oo, (2, y) — (3.4

»

and as ¢ = ~o0, {2, ) — (4, -1}, [

¢

@

(b} By the Fundamental Theorem of Caleulus, die /dt = cos{£t*) and

dy/dt = sin(%tz). 5o by Formula 1, the length of the curve from the

origin to the point with parameter value ¢ is { @
N2 J
L= \vf{%) i du} du = | VCU cos? {Zu?) +sin®(£u2) ay . .

= fildu=t [or —tift < 0]
We have used u as the dummy variable s¢ as not o confuse it with the upper lim#t of integration.
The coordinates of 7' are (rcosf,rsind). Since 7P was K
unwound from atc T4, TP hag length r&. Also
“PTQ = 4PTR - QTR = $m — 8, 50 P has coordinates
T = reos o rbcos(in — ) = rleosd + Fsinf),

y=rsing — rfsin{ir ~ ) = risinf — 8 cos 1.

- Ifthe cow walks with the Tope taut, i traces ot the portion of the involute in Exercise $3 > LOCRESpORding o the range
D<4<y arriving at the point (=1 arl when 6 = 7. With the repe now fuily extended, the cow walks i a semicircle of

radius 77, arriving at {~, 77}, Finally, the cow traces out andther portion of the involute, ramely the reflection sbout the
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Csegment af ir o gz §othat Ties in the g quadrant

goes from Gw %, Thus, [ = |

-
VAL as ahove,

Ll Thy svimmenyt




SECTIONS.2  CALCULUS WiTh PARAMETRIC CURVES

42, r=cost +In{tan t 1), y = sing, w/4 << A4

da

=T = —~sint T B g et
ot ¥ FI cosd

g .

e Bl L+

i

and—a;m(oaf 50 { /i{ ] i ::sm:”fm2~fm~—£«—
et \ di sin”

L= j cot fdf = 2 in isint

= 2{8+In \/7} =2{:In2) =in2

J
I
rofoy

~.3

0.3

43.

r=e—t y=de7 _gcicy
{de/dty* + (dy/dt)? = (e~ 1)% 4 (2e/2)% = g2t _ 5 + 1+ 46’
¥y

=t + 20t 4] = (e = 1)*

= [ e T Pt = 2 (6" 1 dt fa?

= {7 +8) ~ (e - B) = e o781y

.-—..-wm.wqm-——uuﬁm-—__xﬂm [

Moo= 3t 17 e g0 dafidt =3 — 3t and dy/dt = 8¢, s0

{d/dt? + (dy/dt? = {3 387)% = (61)% = (3 +3t%)° and the length of the 0,9 1= 23

loop is given by

Lo [ (34 3%t = =2 [ (34 31%) dt = 93¢ 4. 1377

= 2(3 N 3\;’?} = 123

e (1 ehy? (1 2¢" + e £ (1 4 26! R R A

*7. Then by Simpson’s-Rule with 1 =

Afi—4 + 2f(-
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36. TeEinty = AT 1<¢<s, %:
[

dy
rf“

b du 2.
Thus,ﬁ:L \/:(B—f")*(

O
f
o
|
[ | 1
S P

38.

CHAPTER Y PARAMETRIC EQUATIONS AND POLAR COORDINATES

1 dy 1 Cda\? AN | 1 iy
= 2= N B A = 7 g
;end N <d*) dt B4+ m
- J T
iy MRS cte2
dt = e S | 4t
/ \w{t /z\m?s}?cffw:l; / 2T
E=130 =442 0<r<n,
dr/dt = 6t and dy/dt = 642, 50 (dz/dt)® + (dy/di)® = 36:% « 344,

Thus,

= J /367 T 36
= 6tVI+t7dl =6 f7 VU (3du)

fu=1+4 dy - 2 dt)

= 35%;3/2}1 =P - =223 -y

z = afcosl + fsinf), y - a(sind — Geosd), 0 < ¢ <

(;—g) + (gg) :azj(wsinﬂ$90038+5in6’}2+(cc;s«9+@sin€Acos€)}2f
= 0?07 (cos? § L gin? 8) = (af)?
L= fTafd = a[36°]" = R
—4
¢ dr  (1+4).1-1.1 1 dy 1
PesrTr oy, 0cicg B AFY 1ot sand 2 = 1
Bo=ropvshinocice dt 1+ )2 Aree Mg = 7o
dz\' 1 1 i 2 219
=} :M'%Sleﬁ"(l-—f—t | = . Thus,
(d.t) (df) {I+f}4—r{].+!')2 et T 2 (141" *
3
VETH TS 3 - E T “E
L:[ tq 2:\0 /lg——%du Ju,::t%],du:di’j “‘Ei M*In(n%«\mzn‘»l)}
o + ' ;

:.ﬁL,;eHn(:Hv?ﬁH

\/-2—_111(1»%\/?&

40, ;_r::e;—:"‘%e_’,y:‘ﬁ*?f,{}gig&
dfdi = e' — et and dy jdf = —2. 50
< :1: dz - e ’ By — % z N
(:%) + ( :) — 6’221 — Dy R SR -1 + 24 o {ﬁﬁ £ ..;2
27 a7 i
and L = [ {f +¢ } df = - "E:j L =1y e i
4% w = ' cost, y=esing, <4< n
’/t'é.'}"\:) f\.(f . - . s
(i}—) ! i’ b= lefeost —singy)® o (8inf +costy]”
Y it ] A i ! ]
2 o . o
= (") 10087t - 2cost sint + sin t)
(e (sin% t 4 2sing cost + cos” 1)
a -25
= " {Zcos? ¢ . 2sin?t) = 0¥
Thus, I =2 (e -

B e RS




SECTION 9.2 CALCULUS wiTH PARAMETRIC CURVES
30. By symmetry, 4 = 4 [P ydr = »lf 281’ 934 cos® Aain &1 df = 1242 N 2 sin* fcos 8 9. Now
S sin® 6 cos? 6 g ~ Jsin® 6% gin? 20)df = [T~ cos 28} sin® 260 gg
= -— 9(1 — cos 44 — gin? 9960328 46 == w€ﬁ - ;)—5 sindé - Lsin®og o

2

so [77%sin® @ cos? 6.4 — {558 ~ & sindg ~ T sin® 28] 777 = 53 Thus, 4 = 120%( 2 = 2ra?.

f:if:%

WA= [ iy = L5 (r ~ deos B)(r — deos ) df = LT = 2drcos 6 + o cos® 4 28
= 1?6 — 29rsing o 149 + isin?{?}?fp = 2nr? o md?
L 2 ) i iG

32. {a) By Symmetry, the area of % is twice the area inside % above the z-axis. The top half of the loop is described byaz:

¥t 3t, -3 <y < 4, s0, using the Substitution Rule with Y=1t" 3t and dy — 2t dt. we find that
area =2 [ ydr =2 305 _ap0 g 2552 6y = 9205 _ g7

r 1 T as e

=R o=zl Lotz g B) = 2(-3VE)] = 2,3

(b} Here we use the formuyla for disks and use the Substitution Rule as in part {a):

volume == 71-]:}3 e = T [ ‘/3’1&3 ~ 3t)22 dt = 27 j = 6t* + 52)¢ gt
=23 0 4 2373 =2m (310 - gz 8(-31/2y
81 Bl __ 2v
=P - s 2y

{¢) By symmetry, the y-coordinate of the centroid is (1, To fingd the z-coordinate, we note that it is the same as the E-COOI

of the centroid of the top half of &, the area of which is RN ¥ V3. So, using Formula 7512 with 4 = X

we get
Fom B 3 = 5 —vE,2.3 [1p7 _ 3,57-
T= e [0 TYde = e [TV203 gy Jetdt = 2. lgT L2

B3
5

= Fm H3T
8o the coordinates of the centroid of % are (ry) = (2,0},

33. Iztwtz’ y;.:%t32 1<f'<2 dx G.it —1»2tan(idy/de2fI/2 s
(o fde)® + (dy/dn)* = (1 - a0)? 1 (agr2y2 _ ) T = ] 427 Ty,
= J N Ty iy dt JEVTF A ar,

o=+ y=1t% -3 <y <3 dr/dt = ¢f and dyfdi == % s {da/dti® (diy/di}? = &' L g2 Thus

3

L= N T T T T VT g

3B w =t epg Liy=d-sing, O SEL I dz/di = - sintand dy/df = | COS 1, 50

{do/uty? + (dy/de;® - (1 ~sint}® £ (1 - cos 1 = {1~ 2sint + sin? £+ {1~ 2cost + cos? 1)
=3 - 2sint — Zeost

Thus, L = [ Vde/dt)® T T g jg V3 28Rt~ Zeosf s
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Taking iy = Z andt2 = ~Z gives (ir, y) = (0, 0} for both values of £. ¥
drfdi = 2sin 2¢, and dy/dt = T6in 2 tan 1 — cos 2 sec? £. When

f= % de/dt = 2anddy/di = 2,50 dy/dz = 1. Whent = —%, L0

defdt = ~2and dy/dt = 2, so dy/dx = —1. Thus, the equations of the

twotangents at (0. Grarey = rand y = —xr. =1

o . _ PR dy dy  dsind
B (ayr =rf—dsinf, y =r ~deos b, ng;fdcoeé % = dsin#, Scd e

MY < d < r then |deos®] < d < r,sor —deosf > r —d > 0. This shows that dx /dif never vanishes, so the trochaid

can have no vertical tangemt if d < 7.

W 2 =acos®d, y = asin® g,

dx 5o . b s
{a) 3{; = —3acos® Hsind, % = 3asin” Bcos f, so Z{% = —:;r;i = —tanf.

¢b) Thetangent ishorizontal & dy/de =0 4 tanf =0 < &=nr < {z,y) = {£a,0).
The tangent is vertical <> cosf =0 < 6 isan odd multiple of 5« (i, y) = (0, Za].

(©)dy/de =41 & tanf =31 & §isanodd multiple of 3 & (zy) = (:ﬂ—ia t%;a)
{Alt sign choices are valid,)

23. The line with parametric equations 2 = —75, y = 12¢ — 5 s Y= 12(—~%m) — 3, which has slope —%,3

dy  dy/di 12t 2
3 2 § 3/ 2 AN
T = B = 6" hg — = == 3 44 = T
The curve = £ + 4¢, y = 6¢° has slope B did T 3B Thzs equals — 22 e 3 -4 <
B+PL+1)=0 & t=-lot=-1 o (2,9 =(-5 6¥0r{ 2
a i dy dg 6%
cr=3 el y =241 — = t, —= = 6i* — =t {ev = 0
2. x=3%"+1, y t7 -+ 1 T fi T 612, d,c & t {even where t = (3}

So at the point corresponding to parameter value #, an equatior: of the tangent line is y — (26% 4 1) = tff ~ (3% & 1);
I this line is to pass through (4, 3}, we must have 3 — (26% + 1) = ¢4 — (3¢% & N e 28 -2=3% -3t <

-8t +2=0 = 1 t+2)=0 & t=1or-2 Hence, the desired equations are y ~ 3 = 2z — 4, or

y =& — L tangentto the curve at (4. 3), and ¢ — (—15} = ~2(z - 13}, ory = —2 4 11, tangent to the curve at (13, —15).

27. By symmetry of the ellipse about the - and y-axes,
Amaflyde=4[°,

= 2&"?}5;9 — ‘é?:'s‘iﬂ ‘26‘_: o

bsing {~asin®df = 4ab {7/ sin? 949 = dab [T

2 P
= 2ab{E) = wab

(1~ cos 267 df

Bir1/E=25 & t=1or2 andfor Lol Lwehavel + 14 <25 x = —

b

wheni= andr = £ whent = 2.

A= i;’fﬁ;i(ié.:'} ~yldr= [Tt~ 11+ 1dE (et L de = (1 + 1/8%) di]

2
. , 5% . B i]
e P e + e = 2 - |
17 2 2 2 i ! 9 2525;;2
=245 - 2m2 -+ i) - (4 22542 = 2B - gn2
29, —~13dr = j:?zgt’ — (-sint)de = [T e sint — sing) dt ! F’-{%f’#smf-n cosf) +cost "

A AR
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18. We graph the curve i = ¢ — 943 _ 942 0 i 73
=1 - tinthe viewing rectangle -2.1.1 | f :
by (~0.5,0.5], This rectangle corresponds e f
approximately w ¢ @ [-1, 0.8 We estimate ; e E; - 5 L
that the curve has horizonial tangents at about \‘““""“““”"*"“T“;““*”"*’ L‘“““”““““—‘““I-*%—/ 7
{(~1. 04} eand (-0.17, 0.39) and vertical tangents at abous (0,0} and { ~p0.19, (.37). We calculate
% = ﬁ{;jf CIETTTE D ii,; i;g‘ The horizontal tangents ocour when dy /df = 32 - 1 — 0 & = 1:?; $0 both

20.

dx .y . :
- I = eost, y=sindcost, i —sinfg, d—:tl = —sin®¢ + cos? ¢ = cos 2¢,

horizontal tangents are shown in our graph. The vertical tangents occur when defdt = 2¢(2% _ 35 . 2Y=0 «

R0 o = 0, —% or 2. It seems that we have missed one vertical tangent, and indeed if we plot the

curve on the f-interval | -1.2, 2.2} we see that there is another vertical tangent at (-8, 6).

We graph the curve © = 4 5 44 82,
y = 26% — tinthe viewing rectangle
[~3.7,0.2] by [~0.2, 1.4]. It appears that
there is a horizonta) tangent at about
(~0.4,-0.1), and vertical tangents at
about {—3, 1} and (q, 0). We calculate

—13¢

dy /fdt 4t -1 . . . : . .
gg = deg%% == m, 50 there is a horizontal tangent where dy/dt — 4¢ 1 = g = L= =, This point

{the lowest point) is shown in the first graph. There are vertical tangents where du/df = 41% 1 1942 _ 6t=0 =

I T =0 & 40+ 43(¢ ~ 1} = 0. We have missed one vertical tangent corresponding to ¢ == —4, and if we

plot the graph for ¢ ¢ {~5, 3], we see that the curve has another vertical tangent Iine at approximately {~128.36).

o,y = (0, 0) & cost=0 o= ¢ is an odd multiple of % When

w i dy dy I dz
be= =, ol oo — ~= = e e D2 o d
3 1 and o 1, s0 . 1. When ERPT ian

d
E? = —1. So % = -1 Thus, y = z and ¥ = —u are both tangent to the

curve at (0, 0).

Z=l- et = oy 2y = (tani)(1 — 2 cos® )= —~(tant}cos 2, To find a point where the curve crosses itself,

we lock for two values of £ that give the same point (i, g3, Call these valyes f: and &2, Then cos® ¢, = cog? fz {from the

“quation for ) and either tan t = tanis or cos® #y = pos® tr = 1 (From the equation for i), We can satisfy
cos” £y e gpgt ‘pandtant; == tant, by choosing ¢: arbitrarily and taking #5 = #; + » g0 evidently the whole curve is
relraced every sime ¢ traverses an interval of length -, Thus, we can restrict our attention to the interval { ~5 5y Hy = g

then cos® 1, = cog? bubuttanfz = — tant,. This suggests that we iry 1o satisfy the condition cos? 7, = cos® ty =

E
5.

i
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g [ Ju ¥

Ayl = Dcosd. so e

Also., die /df = -3 i 3, 86

The curve has horizontal rar +

9,22} and vertical tangenis at {21, (13, {

H. From the graph, it appears that the leftmost point on the curve o = 1% 42

¥ =1+ intis zhout (—0).95 1.36% To find the exact coordinates, we
find the value of 7 for which the graph has a verticai tangent, that is,

% i Lo

O=dojdt = 4% — 2y o 2427 e 1Y = g
2(V2¢ V%t e I}a=0 = t=0or 1-v—g The negative and 0 roors are

inadmissible since () is only defined for ¢

= {0, s0 the lefimost point must be
((1} (1)\& £ 1y AV
|
< The curve is symmerric about the lne = o ! ‘
since replacing # with —+ has the effect of
replacing (x. ¢} with (= =x). 50 if we can find
the highest point (5. yn b, then the leftmost point
T {gn.—rs ). After carefufly
zooming in, we estimate tlat the highest point o
the curve o = tef = 1o s abour (2.7.0.37,
To find the exact coordinares of the highest point, we fing the value of £ for which the curve has a horizontal tangent,
thatis, doyfdt = (¢ o Flme ™y g e {7 "= b=l This Cotresponds © the poing
1. To find the lefimost point, we find the value of # for which - e
f = 1. This corresponds 1o the point {1 o
Ce 7 by PHospital’s Rufe snd T I S0 the peaxis i an ASVIPte. AL 4 em o
€ -axis is the other Esvmprote. The asvmprotes can alse be determined from the graph, if we
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8.2 Calculus with Parametric Curves

W

. dy . dz 3 dy  dy/di —5 5

Lao=i—¢% y=9_5 - T T =l -3 and 22 2 B o S,

v Y PR 7 3 and 22 dejdt ~ 1 - g2 T ETY

ey s da dy  dy/dr 1+ ¢!
=fe! y=—t et = lt e — = tef 4 o and T e =
L=t y—tiot o ¢~ e -+ e’ an Ry e
' ' dy R dy  dyidi 3?4

ety =P ey W AL e = 4 and S o SO 34T R
be=tely ar T L g = At and drjdi 4 e

{z,y) = (2, —2} and dy fda = M_4 = ~L soan equaﬂon of the tangent to the corve at the point corresponding 1o £ = 1 i

g (=2} = (- D{r—~2), ory = —g.

. dy - d dy _ o dy/di ¢
s = 2"‘-— ’ﬁlaw.'ﬁx. Wg:‘atzu = 44 — =L e == T,y = 13
do2=2"4+1 g 5t~ £ 3 a 1, g 4t, and d:zj-_ cirfdf e When ¢ 3,(1_yj. (29.(;_,
and dy /e = = £, 80 @0 equatlon of the tangem Ime is y — 6= —(sr — 19}, ory = —;5 — &
7 2 dy 2t g Ar. . . o dy. ey fedt o R Ny
Saeme oy =t odnt® pe1 W2 e and = = et ——
Y n dt A tdt g\/“ dx da,,dt ev’f{z\,t} 2z \/Zevf
ay 2

Whent = 1, (x, v = (e, 1) and E— =~ 50 an eguation of the tangent line is y— 1=~ (a: —elory = w%z + 3.
- :

dy _ dy/do . cosf — 2gin 29

B. z = cos# + sin 24, yxsmﬁ+cos28; & = 0. = Tndl " 7R

When 8 =0, {z, ) = {1,1)

and dy/dz = 2. 50 an equation of the tangent to the curve is y — 1 = Ho—1)0ory = S L

W _dy/de 2 -1)
dr ~ drjat T e

To(8) o= &, y=1{t-1)% (1, 1) g?tz{fml},ﬁ::e".and

At{1,1}, ¢ = 0and g—- = —2, 50 an equation of the tangentis y — i = —2(z — Liory = -2 13
Mr=e = t=Inz,soy = (t-1)% = (Inz - 1)*an jf =2z~ 1;(1). When z = 1,

gﬁ% = 2{—13(1} = -2 soan equation of the tangent Sy = 2243 asin patt {a},
8 1 =sing, ¥ =sin(t + sint); 0,00,

dy dy/di cosit + sin i3l + cost) < .
= = ; e ~ = (sect + 1 cos{t + sint}
FRET cos t ( Jeos, /

B

Note that there are two tan: gents at the point (0,03, since both f = andf =
correspond 1o the origin, The tangent comresponding to ¢ = ( has slope

{secll+ 1) cos(f + Fsind) = Zeos0 = 2, and jis equation is y == 2z The tangent

corresponding 1o 7 == 7 has slope {sec o + Lj cosln + sin 7} = 0. 50 it is the y-axis,

rz,’z,f’ffff 28467 o, .3
Cdzjdt 2f
IR U

4 12,
= --~———~§~t—~—--—- == -—2—; = E? The curve is CU when ‘:}“% >0, that is, when ¢t > (.
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