110.201 Homework 5 Solutions

March 24, 2005

Pages 146-151

(16) If the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are linearly independent, they will span \(\mathbb{R}^3 \), so that \(\vec{x} \) will automatically be in their span. A quick row reduction exercise shows that \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are linearly independent, so that \(\vec{x} \) does lie in their span.

(30) If you really wanted to, you could go ahead and compute \(S \) and change basis that way. But this one can, thankfully, be done in a much easier way. Some quick computation shows that

\[
A \vec{v}_1 = \vec{v}_1, \quad A \vec{v}_2 = -\vec{v}_2, \quad A \vec{v}_3 = \vec{0}
\]

It follows immediately that the matrix of the linear transformation represented by \(A \) in the basis \(\mathcal{B} \) is

\[
B = \begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

(46) We are looking for linearly independent vectors \(\vec{v}_1, \vec{v}_2 \) in the given plane such that \(\vec{x} = 2\vec{v}_1 - \vec{v}_2 \). By fooling around, you can find that two such vectors are given by \(\vec{v}_1 = (1, -\frac{1}{4}, 0), \vec{v}_2 = (0, \frac{1}{2}, -1) \). A more systematic way to do the problem would go as follows: Find two linearly independent vectors in \(\mathbb{R}^3 \) such that

1. \(\vec{x} = 2\vec{v}_1 - \vec{v}_2 \)
2. \(\text{proj}_V \vec{v}_1 \) and \(\text{proj}_V \vec{v}_2 \) are linearly independent as well.

This is easy to do by just messing around a bit. Then the projections of \(\vec{v}_1 \) and \(\vec{v}_2 \) will span \(V \), and we will have the equation
2\text{proj}_V\vec{v}_1 - \text{proj}_V\vec{v}_2 = \text{proj}_V\vec{x} = \vec{x}

solving the problem.

162 - 163

(8) Yes, this is a subspace of \(\mathbb{R}^9 \). It consists of all matrices of the form

\[
\begin{bmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{bmatrix}
\]

Here the *'s denote entries that may be nonzero. It is clear that the sum of any two such matrices is also upper triangular. So is any scalar multiple of such a matrix. The zero matrix is upper triangular, so all the axioms for a subspace are satisfied.