(2) The two vectors making up the columns of A are linearly independent, and so they form a basis for the image of A. The fundamental theorem $(\text{im}(A))^\perp = \ker(A^T)$ tells us that a basis of $\ker(A^T)$ can be found by finding a nonzero vector perpendicular to the plane spanned by the columns of A. Such a vector, by any number of methods, is given by

$$\vec{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

(10) (a) Use the fact that each \vec{x} has a unique representation

$$\vec{x} = \vec{x}_0 + \vec{x}_1$$

where $\vec{x}_0 \in (\ker(A))^\perp$ and $\vec{x}_1 \in \ker(A)$. If $A\vec{x} = \vec{b}$, then we have

$$A\vec{x} = A(\vec{x}_0 + \vec{x}_1) = A\vec{x}_0 = \vec{b}$$

proving the claim. The basic point here is that the kernel of A does not contribute when solving inhomogeneous linear equations.

(b) Suppose that \vec{x}_1 and \vec{x}_2 are two solutions to the system. Then clearly $\vec{x}_1 - \vec{x}_2$ is in the kernel of A. But if both \vec{x}_1 and \vec{x}_2 are perpendicular to $\ker(A)$, then so is their difference. The only vector in both $\ker(A) \cap (\ker(A))^\perp$ is the zero vector, and this finishes the demonstration.

(c) By (b) any other solution \vec{x} to the system is of the form $\vec{x} = \vec{x}_0 + \vec{c}$, where $\vec{c} \in \ker(A)$. By the Pythagorean theorem,
\[\| \vec{x} \|^2 = \| \vec{x}_0 \|^2 + \| \vec{c} \|^2 \]
from which the claim follows immediately.

(16) Let \(A : \mathbb{R}^m \to \mathbb{R}^n \). From the FTLA, we have the relation
\[\text{rk}(A^T) + \text{null}(A^T) = n \]
But from the relation \((\text{im}(A))^\perp = \ker(A^T)\), we see immediately that
\[\text{null}(A^T) = n - \dim(\text{im}(A)) = n - \text{rk}(A) \]
. Thus
\[\text{null}(A^T) = n - \text{rk}(A^T) = n - \text{rk}(A), \]
so that \(\text{rk}(A) = \text{rk}(A^T) \).

(20) All you have to do is find the projection \(\tilde{b}^* \) of \(\tilde{b} \) onto \(\text{im}(A) \) and solve the system \(A\vec{x}^* = \tilde{b}^* \). A normal vector perpendicular to the image of \(A \) is
(just find the equation of the plane defining \(\text{im}(A) \))
\[\hat{v} = \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ -1/\sqrt{3} \end{pmatrix} \]
By straightforward computation, then
\[\tilde{b}^* = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix} \]
One easily verifies that
\[A \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \tilde{b}^*, \]
so that \(\vec{x}^* = [2 \ 2] \).